Dễ dàng nhận ra x;y;z dương.
\(y^2+1=x+\frac{1}{x}\ge2\Rightarrow y^2\ge1\Rightarrow y\ge\frac{1}{y}\)
Tương tự ta có: \(x\ge\frac{1}{x};z\ge\frac{1}{z}\Rightarrow x+y+z\ge\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\) (1)
Lại có \(x+\frac{1}{x}=y^2+1\ge2y\)
Tương tự: \(y+\frac{1}{y}\ge2z;z+\frac{1}{z}\ge2x\Rightarrow x+y+z+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge2\left(x+y+z\right)\)
\(\Rightarrow x+y+z\le\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\) (2)
Từ (1) và (2) \(\Rightarrow x+y+z=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)
Đẳng thức xảy ra khi \(x=y=z=1\)