CMR nếu a,b,c,x,y,z thỏa mãn điều kiện:
\(\frac{bz+cy}{x\left(-ax+by+cz\right)}=\frac{cx+az}{y\left(ax-by+cz\right)}=\frac{ay+bx}{z\left(ax+by-cz\right)}\)
thì \(\frac{x}{a\left(b^2+c^2-a^2\right)}=\frac{y}{b\left(a^2+c^2-b^2\right)}=\frac{z}{c\left(a^2+b^2-c^2\right)}\)
( Giả thiết các tỉ số đều có nghĩa )
CMR nếu a,b,c,x,y,z thỏa mãn :
\(\frac{bz+cy}{x\left(-ax+by+cz\right)}=\frac{cx+az}{y\left(ax-by+cz\right)}=\frac{ay+bx}{z\left(ax+by-cz\right)}\)
thì \(\frac{x}{a\left(b^2+c^2-a^2\right)}=\frac{y}{b\left(a^2+c^2-b^2\right)}=\frac{z}{c\left(a^2+b^2-c^2\right)}\)
( giả thiết các tỉ số đều có nghĩa )
1,CMR nếu a,b,c x,y,z thỏa mãn điều kiện :
\(\frac{bz+cy}{x\left(-ax+by+cz\right)}=\frac{cx+az}{y\left(ax-by+cz\right)}=\frac{ay+bx}{z\left(ax+by-cz\right)}\)
thì \(\frac{x}{a\left(b^2+c^2-a^2\right)}=\frac{y}{b\left(a^2+c^2-b^2\right)}=\frac{z}{c\left(a^2+b^2-c^2\right)}\)
( giả thiết các tỉ số đều có nghĩa )
2,CMR nếu \(\frac{a+bx}{b+cy}=\frac{b+cx}{c+ay}=\frac{c+ax}{a+by}\)
thì \(a^3+b^3+c^3-3abc=0\)
3,CMR nếu \(x+\frac{1}{y}=y+\frac{1}{z}=z+\frac{1}{x}\)
thì x=y=z hoặc x2y2z2=1
Cho x,y,z,a,b,c khác 0 và \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\). Chứng minh rằng :
a) \(\frac{a^2}{x}=\frac{b^2}{y}=\frac{c^2}{x}=\frac{\left(a+b+c\right)^2}{x+y+z}\)
b) \(\frac{x^2+y^2+z^2}{\left(ax+by+cz\right)^2}=\frac{1}{a^2+b^2+c^2}\)
Mình cần gấp !
Cho \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\ne0\)
Tính \(\frac{x^2+y^2+z^2}{\left(ax+by+cz\right)^2}\) theo a,b,c
Chứng minh rằng \(\left(a^2+b^2\right).\left(x^2+y^2\right)=\left(ax+by\right)^2+\left(ay-bx\right)^2\)
cho \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\) và \(A=\frac{x^2+y^2+z^2}{\left(ax+by+cz\right)^2}\), \(B=\frac{1}{a^2+b^2+c^2}\)
Tính \(\frac{A}{B}\)
cho cac so thuc x,y,z,a,b,c thoa man \(\frac{x}{a}\)=\(\frac{y}{b}\)=\(\frac{z}{c}\)
CMR \(\frac{x^2+y^2+z^2}{\left(ax+by+cz\right)^2}\)= \(\frac{1}{a^2+b^2+c^2}\)
cho các số thức a,b,c,x,y,z khác 0 thỏa mãn \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\) CMR \(\frac{x^2+y^2+c^2}{\left(ax+by+cz\right)^2}=\frac{1}{a^2+b^2+c^2}\)
các bạn giúp mình nha mình cần để nộp gấp ạ