BÀI 6 tìm x
1,\(2x\left(x-5\right)-\left(3x+2x^2\right)=0\) 2,\(x\left(5-2x\right)+2x\left(x-1\right)=13\)
3,\(2x^3\left(2x-3\right)-x^2\left(4x^2-6x+2\right)=0\) 4,\(5x\left(x-1\right)-\left(x+2\right)\left(5x-7\right)=6\)
5,\(6x^2-\left(2x-3\right)\left(3x+2\right)=1\) 6,\(2x\left(1-x\right)+5=9-2x^2\)
rút gọn biểu thức sau bằng cách nhanh nhất
A = \(\left(a^2+b^2-c^2\right)^2-\left(a^2-b^2+c^2\right)^2-4a^2b^2\)
B = \(\left(3x^3+3x+1\right)\cdot\left(3x^3-3x+1\right)-\left(3x^3+1\right)^2\)
C = \(\left(2-6x\right)^2+\left(2-5x\right)^2+2\cdot\left(6x-2\right)\cdot\left(2-5x\right)\)
D = \(5\cdot\left(3x-1\right)^2+4\cdot\left(5x+1\right)^2-12\cdot\left(5x-2\right)\left(5x+2\right)\)
E = \(\left(3x-1\right)^2+\left(2x+4\right)\cdot\left(1-3x\right)+\left(x+2\right)^2\)
G = \(\left(x-1\right)^3+4\cdot\left(x+1\right)\cdot\left(1-x\right)+3\cdot\left(x-1\right)\cdot\left(x^2+x+1\right)\)
Chứng minh biểu thức sau không phụ thuộc vào giá trị của biến:
A=\(^{x^2}-4x-x\left(x-4\right)-15\)
B=\(5x\left(x^2-x\right)-x^2\left(5x-5\right)-13\)
C=\(-3x\left(x-5\right)+3\left(x^2-4x\right)-3x+7\)
D=\(7\left(x^2-5x+3\right)-x\left(7x-35\right)-14\)
E=\(4x\left(x^2-7+2\right)-4\left(x^3-7x+2x-5\right)\)
H=\(x\left(5x-3\right)-x^2\left(x-1\right)+x\left(x^2-6x\right)-10+3x\)
\(\frac{-3x.\left(5x+3\right)}{1+3x}>=0\)\(\frac{-2x^2+5x-3}{-x.\left(3x+7\right)}>0\)\(\frac{1}{x-2}-\frac{4}{x^2-4}< \frac{1}{3}\)\(x^2-20x+51>0\)\(\left(x-3\right).\left(2x+1\right)\left(1-5x\right)< 0\)\(\left(x-2\right)\left(x+3\right)=< 0\)
Tìm x biết :(đề không sai )
1.\(-4x\left(x-7\right)+4x\left(x^2-5\right)\) \(=28x^2-13\)
2.\(\left(4x^2-5x\right)\left(3x+2\right)-7x\left(x+5\right)\) \(=\left(-4+x\right)\left(-2x+3\right)+12x^3+2x^2\)
3.\(\left(-4x^2-3\right)\left(2x+5\right)\) \(-\left(8x-3\right)\left(-x^2+2\right)\) \(-5x\left(x-6\right)-3x^2-4\)
4.\(\left(x-7\right)\left(x+5\right)-\left(x-3\right)\left(x-2\right)\) \(=15x^2\left(x+1\right)-\left(3x^2-1\right)\) \(\left(5x^2-2\right)-21x^2\)
5.\(\left(x-3\right)\left(-x+10\right)+\left(x-8\right)\left(x+3\right)\)\(=\left(5x^2-1\right)\left(x+3\right)-5x^3-15x^2\)
6.\(\left(-2x^2+5\right)\left(-x+3\right)-x^2\left(2x-6\right)\) \(=\left(x-1\right)\left(x+1\right)-\left(x-2\right)\left(x+4\right)\)
bài 1. giải các phương trình sau
a / \(x =(4x+1) (\frac{3x+7}{3-5x}+1)=(x+4)(\frac{3x+7}{5x-3}-1)\)
b/ \(\left(x^2+3x+1\right)\left(\frac{4x-3}{3x+1}+2\right)=\left(4x+7\right)\left(\frac{4x-3}{3x+1}+2\right)\)1)
bài 2. giải phương trình sau bằng cách đưa về phương trình tích
a/\(\left(4x-5\right)^2-2\left(16x^2-25\right)=0\)
b/ \(\left(4x+3\right)^2=4\left(x^2-2x+1\right)\)
c. \(3x^3-3x^2-6x=0\)
cảm ơn mọi người nhiều lắm !
Mọi người giải giúp mình bài này với:
B2: Giải các PT sau:
l) \(\left(x-1\right)\left(5x+3\right)=\left(3x-8\right)\left(x-1\right)\)
m) \(2x\left(x-1\right)=x^2-1\)
n) \(\left(2-3x\right)\left(x+11\right)=\left(3x-2\right)\left(2-5x\right)\)
o) \(\frac{3}{7}x-1=\frac{1}{7}x\left(3x-7\right)\)
p) \(\left(x-\frac{3}{4}\right)^2+\left(x-\frac{3}{4}\right)\left(x-\frac{1}{2}\right)=0\)
q) \(\frac{1}{x}x+2=\left(\frac{1}{x}+2\right)\left(x^2+1\right)\)
r) \(\left(2x+3\right)\left(\frac{3x+8}{2-7x}+1\right)=\left(x-5\right)\left(\frac{3x+8}{2-7x}+1\right)\)
s) \(\left(x+2\right)\left(x-3\right)\left(17x^2-17x+8\right)=\left(x+2\right)\left(x-3\right)\left(x^2-17x+33\right)\)
Các Pro giúp mình với !
rút gọn biểu thức
a) \(x\left(2x^2-3\right)-x^2\left(5x+1\right)+x^2\)
b) \(3x\left(x-2\right)-5x\left(1-x\right)-8\left(x^2-3\right)\)
Giải các phương trình sau:
a) \(\left(4x-1\right)\left(x-3\right)=\left(x-3\right)\left(5x+2\right)\).
b)\(\left(x+3\right)\left(x-5\right)+\left(x+3\right)\left(3x-4\right)=0\)
c)\(\left(1-x\right)\left(5x+3\right)=\left(3x-7\right)\left(x-1\right)\). Giải chi tiết hộ mik nhoa, mik tik
Bài 18.Rút gọn rồi tính giá tri các biểu thức sau
1) \(5x^2-2x.\left(3x+\frac{3}{2}\right)\)tại x=3
2) \(3x\left(x-4y\right)-\frac{12}{5}y\left(y-5x\right)\)tại x=4:y=5
3)\(\left(x-2\right)^2-\left(x+7\right)\left(x-7\right)\)tại x=3
4) \(x^2+12x+36\)tại x=64
5) \(\left(x-3\right)^2-\left(x+4\right)\left(x-4\right)\)tại x-1
6) \(\left(3x+2y\right)^2-4y\left(3x+y\right)\)tại x=\(-\frac{1}{3}\):y=1