\(\left(4x+1\right)\left(x-3\right)-\left(x-7\right)\left(4x-1\right)=15\)
\(4x^2-11x-3-\left(4x^2-29x+7\right)=15\)
\(4x^2-11x-3-4x^2+29x-7=15\)
\(18x-10=15\)
\(x=\frac{25}{18}\)
\(\left(4x+1\right)\left(x-3\right)-\left(x-7\right)\left(4x-1\right)=15\)
\(4x^2-11x-3-\left(4x^2-29x+7\right)=15\)
\(4x^2-11x-3-4x^2+29x-7=15\)
\(18x-10=15\)
\(x=\frac{25}{18}\)
\(\left(4x-5\right)\left(4x+1\right)-4\left(x-1\right)\left(x+1\right)=7\)
Tìm x:
|5x-3|-3x=7
|x-3|+|x-5|-4x=-28
\(\left|x+2\right|+\left|x+\frac{3}{5}\right|+\left|x+\frac{1}{2}\right|=4x\)
\(\left|2x-1\right|+\left(4x^2-1\right)^2=0\)
Tìm x :
1) \(\left(-0,75x+\dfrac{5}{2}\right).\dfrac{4}{7}-\left(-\dfrac{1}{3}\right)=-\dfrac{5}{6}\)
2) \(\left(4x-9\right)\left(2,5+\dfrac{-7}{3}x\right)=0\)
3) \(\left|x-\dfrac{3}{4}\right|-\dfrac{1}{2}=0\)
4)\(\left(\dfrac{3}{5}-\dfrac{2}{3}x\right)^3=\dfrac{-64}{125}\)
Bài 1 :Rút gọn
\(\left(4x^2-3y\right)a2y-\left(3x^2-4y\right)3y\)
\(4x^2\left(5x-3y\right)-x^2\left(4x+y\right)\)
\(2ax^2-a\left(1+2x^2\right)-\left\{a-x\left(x+a\right)\right\}\)
Bài 2:Tìm x
a)\(2x\left(x+1\right)-x^2\left(x+2\right)+x^3-x+1=0\)
b)\(4x\left(3x+2\right)-6x\left(2x+5\right)+21\left(x-1\right)=0\)
Bài 3:Rút gọn
\(x\left(1+x+x^2+...+x^9\right)-\left(1+x+x^2+...+x^9\right)\)
Tìm x biết
1) \(\left(2x+3\right)\left(x-4\right)+\left(x-5\right)\left(x-2\right)=\left(3x-5\right)\left(x-4\right)\)
2)\(\left(8x-3\right)\left(3x+2\right)-\left(4x+7\right)\left(x+4\right)=\left(2x+1\right)\left(5x+1\right)-33\)
3)\(6x\left(3x+5\right)-2x\left(9x-2\right)+\left(17-x\right)\left(x-1\right)+x\left(x-18\right)-17x^2=0\)
4)\(\left(x-1\right)\left(x+2\right)-\left(x-3\right)+5x-7=0\)
Giúp mình nha. Camon nhiều
Rút gọn các biểu thức:
\(A=\left(x+3\right)\left(x^2-3x+9\right)-\left(54+x^3\right)\)
\(B=\left(2x+y\right)\left(4x^2-2xy+y^2\right)-\left(2x-y\right)\left(4x^2+2xy+y^2\right)\)
\(C=\left(2x+1\right)^2+\left(1-3x\right)^2+2\left(2x+1\right)\left(3x-1\right)\)
\(D=\left(x-2\right)\left(x^2+2x+4\right)-\left(x+1\right)^3+3\left(x-1\right)\left(x+1\right)\)
Bài 1 : Tìm GTNN của : \(A=\left|x+8\right|+\left|2x+7\right|+\left|3x+6\right|+\left|4x-7\right|+\left|3x-6\right|+\left|2x-7\right|+\left|x-8\right|-100\)
Cho \(f\left(x\right)=ax^3+4x.\left(x^2-1\right)+8\) và \(g\left(x\right)=x^3+4x.\left(bx+1\right)+\left(-3\right)\)
a.b.c là hằng số.Tìm a để \(f\left(x\right)=g\left(x\right)\)
Tính:
\(a)\left(-2x^2\right)\cdot\left(3x-4x^3+7-x^2\right)\)
\(b)\left(x+3\right)\cdot\left(2x^2-3x-5\right)\)
\(c)\left(-6x^5+7x^4-6x^3\right):3x^3\)
\(d)\left(9x^2-4\right):\left(3x+2\right)\)
\(e)\left(2x^4-13x^3+15x^2+11x-3\right):\left(x^2-4x-3\right)\)