Gọi pt (E) có dạng \(\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\)
\(e=\frac{c}{a}=\frac{2}{3}\Rightarrow c=\frac{2a}{3}\Rightarrow c^2=\frac{4a^2}{9}\)
\(\Rightarrow b^2=a^2-c^2=\frac{5a^2}{9}\)
Pt (E) có dạng: \(\frac{x^2}{a^2}+\frac{\frac{9}{5}y^2}{a^2}=1\Leftrightarrow a^2=x^2+\frac{9}{5}y^2\)
Thay tọa độ M vào ta được:
\(a^2=2^2+\frac{9}{5}\left(\frac{5}{2}\right)^2=\frac{61}{4}\Rightarrow b^2=\frac{305}{36}\)
Pt (E): \(\frac{x^2}{\frac{61}{4}}+\frac{y^2}{\frac{305}{36}}=1\)