Lăng trụ tam giác đều ABC.A'B'C' có góc giữa hai mặt phẳng (A'BC) và (ABC) bằng 60 o ; cạnh AB=a Thể tích khối đa diện ABC.C'B' bằng:
Lăng trụ tam giác đều ABC.A'B'C' có góc giữa hai mặt phẳng (A'BC) và (ABC) bằng 30 o . Điểm M nằm trên cạnh AA’. Biết cạnh AB= a 3 thể tích khối đa diện MBCC'B' bằng:
Lăng trụ tam giác ABC.A'B'C' đều có góc giữa hai mặt phẳng (A'BC) và(ABC) bằng 30 o . Điểm M nằm trên cạnh AA'. Biết cạnh AB= a 3 , thể tích khối đa diện MBCC'B' bằng
Cho hình lăng trụ tam giác đều ABC.A'B'C' có góc giữa hai mặt phẳng (A'BC) và (ABC) bằng 60 0 , cạnh AB = a. Thể tích V của khối lăng trụ đó là:
A . 3 3 8 a 3
B . 3 a 3
C . 3 4 a 3
D . 3 4 a 3
Cho hình lăng trụ đều ABC.A'B'C' có góc giữa đường thẳng A'B với mặt phẳng (ABC) bằng 60 0 và khoảng cách từ điểm A đến mặt phẳng (A'BC) bằng a 5 2 . Tính theo a thể tích V của khối lăng trụ ABC.A'B'C'.
A . V = 125 3 96 a 3
B . V = 125 3 288 a 3
C . V = 125 3 384 a 3
D . V = 125 3 48 a 3
Cho lăng trụ tam giác đều ABC.A'B'C' có cạnh đáy bằng a, góc giữa đường thẳng AC' và mặt phẳng đáy bằng 60 0 . Tính thể tích khối lăng trụ ABC.A'B'C' theo a.
A . 3 a 3 4
B . a 3 12
C . 3 a 3 4
D . a 3 4
Cho hình lăng trụ ABC.A'B'C' có đáy là tam giác đều cạnh 3a. Hình chiếu vuông góc của C’ lên mặt phẳng (ABC) là điểm D thỏa mãn D C ⇀ = - 2 D B ⇀ . Góc giữa đường thẳng AC’ và mặt phẳng (A'B'C') bằng 45 0 . Tính theo a thể tích khối lăng trụ ABC.A'B'C'.
A . 9 a 3 21 4
B . 3 a 3 21 4
C . 27 a 3 21 4
D . a 3 21 4
Cho khối lăng trụ đứng tam giác ABC.A'B'C' có đáy là một tam giác vuông cân tại A, AC = AB = 2a, góc giữa AC' và mặt phẳng (ABC) bằng 30 0 . Thể tích khối lăng trụ ABC.A'B'C' là
A . 4 a 3 3
B . 4 a 3 3 3
C . 2 a 3 3 3
D . 4 a 2 3 3
Cho hình lăng trụ ABC.A'B'C' có đáy là tam giác đều cạnh là 1. Hình chiếu vuông góc của điểm A' lên mặt phẳng (ABC) trùng với trọng tâm của tam giác ABC. Biết khoảng cách giữa hai đường thẳng AA' và BC bằng 3 4 , tính thể tích V của khối lăng trụ.
A . V = 3 36
B . V = 3 3
C . V = 3 6
D . V = 3 12