Lăng trụ đứng ABCD.A'B'C'D' có đáy ABCD là hình vuông cạnh a và đường chéo BD' của lăng trụ hợp với đáy ABCD một góc 30º. Thể tích của lăng trụ là:
A . a 3 6 3
B . a 3 6 8
C . a 3 3
D . 3 a 3 6
Cho lăng trụ ABCD.A’B’C’D’ có đáy ABCD là hình chữ nhật với A B = 6 , A D = 3 , A ' C = 3 và mặt phẳng (AA'C'C) vuông góc với mặt đáy. Biết hai mặt phẳng (AA'C'C), (AA'B'B) tạo với nhau góc α thỏa mãn tan α = 3 4 . Thể tích khối lăng trụ ABCD.A’B’C’D’ bằng
A. V=8
B. V=12
C. V=10
D. V=6
Cho lăng trụ ABCD.A’B’C’D’ có đáy ABCD là hình chữ nhật với AB= 6 , AD= 3 , A'C=3 và mặt phẳng (AA'CC') vuông góc với mặt đáy. Biết hai mặt phẳng (AA'CC'); (AA'BB') tạo với nhau góc α thỏa mãn tan α = 3 4 . Thể tích khối lăng trụ ABCD.A’B’C’D’ bằng
A. V=8
B. V=12
C. V=10
D. V=6
Cho lăng trụ đứng ABCD.A'B'C'D' có đáy ABCD là hình vuông cạnh a. Mặt phẳng (C'BD) hợp với đáy góc 45 ∘ . Tính thể tích lăng trụ
Câu 18: Cho hình lăng trụ đứng ABC.A’B’C’ có đáy ABC là tam giác đều cạnh a, AA’ = 2a. Tính thể tích khối lăng trụ ABC.A’B’C’ theo a:
\(A,\sqrt{3a^3}\) \(B,\dfrac{\sqrt{3a^3}}{6}\) \(C,\dfrac{\sqrt{3a^3}}{2}\) \(D,2a^3\)
Cho lăng trụ đứng ABCD.A'B'C'D có đáy ABCD là hình thang, AB = AD = a, CD = 2a. Đường thẳng A’C tạo với mặt phẳng (ABCD) một góc bằng 60o. Biết hình lăng trụ nội tiếp một hình trụ. Tính thể tích khối trụ ngoại tiếp lăng trụ theo a ta được:
A. 3 πa 3
B. πa 3
C. 4 πa 3 3
D. πa 3 3
Cho hình lăng trụ đứng ABCD.A’B’C’D’ có đáy là hình thoi, biết AA’=4a, AC=2a, BD=a. Thể tích của khối lăng trụ là:
A. 2a3
B. 8a3
C. 6a3
D. 4a3.
Cho hình lăng trụ đứng ABC.A’B’C’ có đáy ABC là tam giác vuông tại A, AC = a, ACB ^ = 60°. Đường chéo B’C tạo với mặt phẳng (AA’C’C) một góc 30°. Tính thể tích của khối lăng trụ theo a.
A. a 3 15 3
B. a 3 6
C. a 3 15 12
D. a 3 15 24
Cho lăng trụ đứng ABC.A’B’C’ có đáy là tam giác ABC vuông tại A; AB=3, AC=3. Mặt phẳng (A'BC) hợp với (A'B'C') góc 60 0 . Thể tích lăng trụ đã cho bằng bao nhiêu?