`x^2+x+6=0`
`<=>x^2+x+1/4+23/4=0`
`<=>(x+1/2)^2=-23/4(vô lý)`
`=>` vô nghiệm
* Bạn tạo HĐT để chứng minh nó lớn hơn 0 là sẽ vô nghiệm.
Ta có : $x^2+x+6=\bigg(x^2+2.x.\dfrac{1}{2} + \dfrac{1}{4}\bigg) + \dfrac{23}{4}$
$ = \bigg(\dfrac{1}{2} + x\bigg) + \dfrac{23}{4}>0$
Do đó đa thức cho vô nghiệm.
CMR :x2+ x +6 vô nghiệm
Ta có: x2+ x +6 = 0
x2 + \(\dfrac{1}{2}\)x + \(\dfrac{1}{2}\)x + \(\dfrac{1}{4}\)- \(\dfrac{1}{4}\)+6
=( x2 + \(\dfrac{1}{2}\)x)+ ( \(\dfrac{1}{2}\)x + \(\dfrac{1}{4}\)) + (- \(\dfrac{1}{4}\)+6)
= x ( x + \(\dfrac{1}{2}\)) + \(\dfrac{1}{2}\)( x + \(\dfrac{1}{2}\)) + \(\dfrac{23}{4}\)
= (x +\(\dfrac{1}{2}\)).(x +\(\dfrac{1}{2}\)) + \(\dfrac{23}{4}\)
= (x +\(\dfrac{1}{2}\))2 + \(\dfrac{23}{4}\)
Ta có : (x +\(\dfrac{1}{2}\))2 ≥ 0 ∀ x
=> (x +\(\dfrac{1}{2}\))2 + \(\dfrac{23}{4}\) ≥ \(\dfrac{23}{4}\)
mà \(\dfrac{23}{4}\)> 0
=> (x +\(\dfrac{1}{2}\))2 + \(\dfrac{23}{4}\)vô nghiệm
=>x2+ x +6 vô nghiệm