\(2,\\ a,ĐK:x\in R\\ PT\Leftrightarrow\sqrt{\left(3x+1\right)^2}=1-2x\\ \Leftrightarrow\left|3x+1\right|=1-2x\Leftrightarrow\left[{}\begin{matrix}3x+1=1-2x\left(x\ge-\dfrac{1}{3}\right)\\3x+1=2x-1\left(x< -\dfrac{1}{3}\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(tm\right)\\x=-2\left(tm\right)\end{matrix}\right.\\ b,ĐK:x\ge4\\ PT\Leftrightarrow6\cdot\dfrac{1}{3}\sqrt{x-4}+\dfrac{2}{5}\cdot5\sqrt{x-4}=2\sqrt{x-4}+10\\ \Leftrightarrow2\sqrt{x-4}=10\Leftrightarrow\sqrt{x-4}=5\\ \Leftrightarrow x-4=25\Leftrightarrow x=29\left(tm\right)\)