Lời giải:
Kẻ $OH\perp AB$ thì $OH=1$ (cm)
Áp dụng định lý Pitago cho tam giác $OHA$ vuông:
$AH=\sqrt{OA^2-OH^2}=\sqrt{3^2-1^2}=2\sqrt{2}$ (cm)
$OA=OB$ nên tam giác $OAB$ cân tại $O$. Do đó đường cao $OH$ đồng thời là đường trung tuyến
$\Rightarrow AB=2AH=4\sqrt{2}$ (cm)
Đúng 1
Bình luận (0)