Ta có :
\(\frac{2014}{2015}+\frac{2015}{2016}=1-\frac{1}{2015}+1-\frac{1}{2016}\)
\(=\left(1+1\right)-\left(\frac{1}{2015}+\frac{1}{2016}\right)=2-\left(\frac{1}{2015}+\frac{1}{2016}\right)< 2\)
Lại có :
\(\frac{2014}{2015}+\frac{2215}{2016}=1-\frac{1}{2015}+1+\frac{199}{2016}=2+\left(\frac{199}{2016}-\frac{1}{2015}\right)\)
\(=2+\frac{400985}{4062240}-\frac{2016}{4062240}=2+\frac{398969}{4062240}>2\)
\(\text{Vậy }\frac{2014}{2015}+\frac{2015}{2016}< \frac{2014}{2015}+\frac{2215}{2016}\)