ta thấy\(8⋮8\) (1)
8k(k+2)\(⋮\)8( vì \(8⋮8\) ) (2)
\(\Rightarrow\)để 4k(k+1)+8k(k+2)+8\(⋮\)8
thì 4k(k+1)\(⋮\)8( định lý chia hết của 1 tổng)
mà k(k+1) là tích của 2 số tự nhiên liên tiếp
\(\Rightarrow\)k(k+1)\(⋮\)2
mà 4\(⋮\)4
\(\Rightarrow\)4k(k+1)\(⋮\)2.4
\(\Rightarrow\)4k(k+1)\(⋮\)8 (3)
từ (1);(2) và 3
\(\Rightarrow\)4k(k+1)+8k(k+2)+8\(⋮\)8( định lý chia hết của 1 tổng)
chú ý: định lý chia hết của 1 tổng là khi cả 3 số hạng cùng chia hết cho 1 số thì tổng đó chia hết cho số đó.