công thức \(\frac{a}{b}< \frac{a+m}{b+m}\)
nên ta có : \(\frac{5^{12}+1}{5^{13}+1}< \frac{5^{12}+1+4}{5^{13}+1+4}\)\(=\frac{5^{12}+5}{5^{13}+5}=\frac{5.\left(5^{11}+1\right)}{5.\left(5^{12}+1\right)}=\frac{5^{11}+1}{5^{12}+1}\)
=> \(\frac{5^{12}+1}{5^{13}+1}< \frac{5^{11}+1}{5^{12}+1}\)
đặt A và B = 2 cái kia rồi nhân nó với 5 là đc
Áp dụng a/b < 1 => a/b < a+m/b+m (a,b,m thuộc N*)
Do 512 + 1/513 + 1 < 512 + 1 + 4/513 + 1 + 4
< 512 + 5/513 + 5
< 5.(511 + 1)/5.(512 + 1)
< 511 + 1/512 + 1
Vậy 512 + 1/513 + 1 < 511 + 1/512 + 1
Ủng hộ mk nha ^_^
Đặt \(A=\frac{5^{12}+1}{5^{13}+1}\)và \(B=\frac{5^{11}+1}{5^{12}+1}\)
\(5A=\frac{5\left(5^{12}+1\right)}{5^{13}+1}=\frac{5^{13}+5}{5^{13}+1}=\frac{5^{13}+1+4}{5^{13}+1}=\frac{5^{13}+1}{5^{13}+1}+\frac{4}{5^{13}+1}=1+\frac{4}{5^{13}+1}\)
\(5B=\frac{5\left(5^{11}+1\right)}{5^{12}+1}=\frac{5^{12}+5}{5^{12}+1}=\frac{5^{12}+1+4}{5^{12}+1}=\frac{5^{12}+1}{5^{12}+1}+\frac{4}{5^{12}+1}=1+\frac{4}{5^{12}+1}\)
Vì 513+1>512+1 suy ra \(\frac{4}{5^{13}+1}< \frac{4}{5^{12}+1}\)
\(\Rightarrow1+\frac{4}{5^{13}+1}< 1+\frac{4}{5^{12}+1}\)
\(\Rightarrow5A< 5B\)
\(\Rightarrow A< B\)