Ta có như sau:
a, \(\frac{8.7}{5.11}\) = \(\frac{56}{55}\); \(\frac{2.41}{3^{4^{ }}}\)= \(\frac{82}{81}\)
Suy ra \(\frac{56}{55}\)= 1+\(\frac{1}{55}\); \(\frac{82}{81}\)= 1+\(\frac{1}{81}\)
Vì \(\frac{1}{55}\)> \(\frac{1}{81}\)suy ra \(\frac{56}{55}\)< \(\frac{82}{81}\)
a) Ta có \(\frac{8.7}{5.11}=\frac{56}{55}=1+\frac{1}{55}\)
\(\frac{2.41}{3^4}=\frac{82}{81}=1+\frac{1}{81}\)
Vì \(\frac{1}{55}>\frac{1}{81}\)nên \(1+\frac{1}{55}>1+\frac{1}{81}\)nên \(\frac{8.7}{5.11}>\frac{2.41}{3^4}\)
Vậy \(\frac{8.7}{5.11}>\frac{41.2}{3^4}\)
Ta có:
a)\(\frac{8.7}{5.11}\)và \(\frac{2.41}{3^4}\)
\(\frac{8.7}{5.11}=\frac{56}{55}=1+\frac{1}{55}\)
\(\frac{2.41}{3^4}=\frac{82}{81}=1+\frac{1}{81}\)
Vì:\(\frac{1}{55}>\frac{1}{88}\)
Nên: \(1+\frac{1}{55}>1+\frac{1}{81}\)
=>\(\frac{8.7}{5.11}>\frac{2.41}{3^4}\)
Vậy:\(\frac{8.7}{5.11}>\frac{2.41}{3^4}\)