\(\sqrt{4+\sqrt{7}}=\sqrt{\frac{2\left(4+\sqrt{7}\right)}{2}}=\sqrt{\frac{8+\sqrt{28}}{2}}\)
do \(\sqrt{\frac{8+\sqrt{28}}{2}}>\sqrt{\frac{7+\sqrt{13}}{2}}\)=>\(\sqrt{4+\sqrt{7}}>\sqrt{\frac{7+\sqrt{13}}{2}}\)
Ta có :
\(\sqrt{4+\sqrt{7}}=\frac{\sqrt{8+2\sqrt{7}}}{\sqrt{2}}=\frac{\sqrt{\left(\sqrt{7}+1\right)^2}}{\sqrt{2}}=\frac{\sqrt{7}+1}{\sqrt{2}}=\frac{\sqrt{14}+\sqrt{2}}{2}\)
\(\sqrt{\frac{7+\sqrt{13}}{2}}=\frac{\sqrt{14+2\sqrt{13}}}{2}=\frac{\sqrt{\left(\sqrt{13}+1\right)^2}}{2}=\frac{\sqrt{13}+1}{2}\)
Đến đây thì dễ rồi ^^