Chọn B.
Vậy khoảng cách từ điểm M(1;-1) đến đường thẳng Δ: 3x + y + 4 = 0 là
Chọn B.
Vậy khoảng cách từ điểm M(1;-1) đến đường thẳng Δ: 3x + y + 4 = 0 là
Tìm khoảng cách từ một điểm đến đường thẳng trong các trường hợp sau:
a, A(3; 5) và Δ : 4x + 3y +1 = 0
b, B(1; -2) và d: 3x – 4y -26 = 0
c, C(1; 2) và m: 3x + 4y -11 = 0
Trong mặt phẳng Oxy, cho ba điểm A(-3;5),B(4;6)
a.Viết phương trình đường thẳng qua 2 điểm A,B
b.Viết phương trình d qua A và song song (d1): 3x-y+5=0
c.Tìm M trên (d1) sao cho khoảng cách từ M đến (Δ): x-2y+5=0 là 2\(\sqrt{5}\)
d.Viết phương trình (d2) qua C(3;1) và cách đều A,B
Câu 1: Tìm tập hợp các điểm cách đều 2 đường thẳng:
Delta3 :3x + 4 y + 6 = 0
Delta4 :5x -10 = 0 ( phân giác góc tạo bởi D3 và D4 )
Câu 2: Cho hai đường thẳng:
Delta : 3x + 2y - 1 = 0 và d : 5x - 3y+2=0
1) Tính khoảng cách từ A(5 ;4) đến đường thẳng Delta
2) Viết phương trình các đường phân giác của góc tạo bởi hai đường thẳng trên.
3) Tìm điểm M thuộc Delta sao cho khoảng cách từ M đến d bằng 5.
4) Tìm điểm N thuộc đường thẳng (D1) : x - 2y = 0 bằng hai lần khoảng cách từ N đến d .
Trong không gian Oxyz, cho đường thẳng Δ: x = 1 + 2, y = 2 + t, z = 1 + 2t và điểm M(2; 1; 4). Khoảng cách từ M đến đường thẳng Δ là:
A. 5
B. 3
C. 5
D. Đáp án khác
Tính khoảng cách từ các điểm M(-2; 1) và O(0; 0) đến đường thẳng Δ có phương trình 3x – 2y - 1 = 0.
Cho điểm A(-2; 1) và hai đường thẳng d1: 3x - 4y + 5 = 0 và d2: mx + 3y - 3 = 0. Giá trị của m để khoảng cách từ A đến d1 gấp hai lần khoảng cách từ A đến đường thẳng d2 là:
A. m = ± 1
B. m = ± 15 3
C. m = ± 4
D. m = ± 15 5
Tìm điểm M nằm trên đường thẳng d : 2x+ y- 1= 0 mà khoảng cách đến d’ : 3x+ 4y -10= 0 bằng 2?
A. (3 ;1)
B. (-1 ; 3)
C. - 16 5 ; 37 5 v à 4 5 ; - 3 5
D. 16 5 ; - 37 5 v à - 4 5 ; 3 5
Cho tam giác ABC có A(6;3) ; B(4;-1)
a.Viết phương trình tổng quát của cạnh AB.
b.Viết phương trình đường thẳng Δ song song với đường thẳng d:x+3y-5=0 và Δ cách điểm M(1;0) một khoảng bằng \(\sqrt{10}\)
cho đường thẳng Δ : x + y - 2 = 0 và điểm A( 2; 2). Tìm tọa độ điểm M thuộc đường thẳng Δ sao cho khoảng cách từ A đến M nhỏ nhất.