Cho ba điểm A(1; 2; 1), B(2; -1; 1), C(0; 3; 1) và đường thẳng d: x - 3 = y - 1 = z 2
Viết phương trình mặt phẳng (P) đi qua A, song song với d, sao cho khoảng cách từ B đến (P) bằng khoảng cách từ C đến (P).
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x - 3 2 = y + 2 1 = z + 1 - 1 và mặt phẳng (P):x+y+z+2=0. Đường thẳng ∆ nằm trong mặt phẳng (P) vuông góc với đường thẳng d đồng thời khoảng cách từ giao điểm I của d với (P) đến ∆ bằng 42 . Gọi M(5;b;c) là hình chiếu vuông góc của I trên ∆ . Giá trị của bc bằng
A. -10
B. 10
C. 12
D. -20
Trong không gian Oxyz cho mặt phẳng (P): x+y-2z-5=0 và đường thẳng ∆ : x - 1 2 = y - 2 1 = z 3 . Gọi A là giao điểm của D và (P) và M là điểm thuộc đường thẳng D sao cho AM = 48 Tính khoảng cách từ M đến mặt phẳng (P)
A. 6
B. 14
C. 3
D. 5
Trong không gian Oxyz, cho hai điểm A(-3;0;1), B(1;-1;3) và mặt phẳng P : x - 2 y + 2 z - 5 = 0 . Đường thẳng (d) đi qua A, song song với mặt phẳng (P) sao cho khoảng cách từ N đến đường thẳng d nhỏ nhất, Đường thẳng (d) có một VTCP là u → = 1 ; b ; c khi đó b c bằng
Cho đường thẳng ∆ : x + 1 2 = y 3 = z + 1 - 1 và hai điểm A(1;2;-1), B(3;-1;-5) . Gọi d là đường thẳng đi qua điểm A và cắt đường thẳng sao cho khoảng cách từ B đến đường thẳng d là lớn nhất. Phương trình của d là:
A. x - 3 2 = y 2 = z + 5 - 1
B. x - 1 = y + 2 3 = z 4
C. x + 2 3 = y 1 = z - 1 - 1
D. x - 1 1 = y - 2 2 = z + 1 - 1
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ : x + 1 2 = y 3 = z + 1 - 1 và hai điểm A(1; 2; -1); B (3; -1; -5). Gọi d là đường thẳng đi qua điểm A và cắt đường thẳng Δ sao cho khoảng cách từ điểm B đến đường thẳng d là lớn nhất. Phương trình đường thẳng d là:
A . x - 3 2 = y 2 = z + 5 - 1
B . x - 1 = y + 2 3 = z 4
C . x + 2 3 = y 1 = z - 1 - 1
D. Tất cả sai
Trong không gian với hệ tọa độ Oxyz, cho (P): x - 2y + 2z -5 = 0, A (-3; 0; 1), b (1; -1; 3). Viết phương trình đường thẳng d đi qua A, song song với (P) sao cho khoảng cách từ B đến d là lớn nhất.
A . x + 3 1 = y - 1 = z - 1 2
B . x + 3 3 = y - 2 = z - 1 2
C . x - 1 1 = y - 2 = z - 1 2
D . x + 3 2 = y - 6 = z - 1 - 7
Cho điểm A(2;5;3) và đường thẳng d: x - 1 1 = y - 1 1 = z + 2 1 . Gọi (P) là mặt phẳng chứa đường thẳng d sao cho khoảng cách từ A đến (P) lớn nhất. Khoảng cách từ điểm M(1;2;-1) đến (P) bằng
A. 3 2
B. 11 18
C. 11
D. 11 18 18
Trong không gian Oxyz, cho mặt phẳng (P): x + 2y - z + 5 = 0 và hai điểm A(-2; -1; 1), B(6; 6; 5). Trong các đường thẳng qua A và song song với (P) hãy viết phương trình đường thẳng mà khoảng cách từ B đến đường thẳng đó là nhỏ nhất.