Cho hình phẳng H (phần gạch chéo trong hình vẽ). Thể tích khối tròn xoay tạo thành khi quay hình H quanh trục Ox được tính theo công thức nào dưới đây?
Cho hình phẳng (D) được giới hạn bởi các đường x=0, x=1, y=0 và y = 2 x + 1 .Thể tích V của khối tròn xoay tạo thành khi quay (D) xung quanh trục Ox được tính theo công thức
Cho hình phẳng (D) được giới hạn bởi các đường x = 0; x = 1; y = 0 và y = 2 x + 1 . Thể tích V của khối tròn xoay tạo thành khi quay (D) xung quanh trục OX được tính theo công thức
Cho hình phẳng (D) được giới hạn bởi các đường x=0; x = π ; y = 0 và y = -sinx. Thể tích V của khối tròn xoay tạo thành khi quay (D) xung quanh trục Ox được tính theo công thức:
Quay hình phẳng Q giới hạn bởi các đường: y 1 = sinx và y 2 = 2x/ π quanh trục Ox, ta được một khối tròn xoay. Khi đó, thể tích khối tròn xoay này bằng:
A. 1/6 B. π /6
C. 8 D. π 2 /6
Quay hình phẳng Q giới hạn bởi các đường: y 1 = sinx và y 2 = 2x/π quanh trục Ox, ta được một khối tròn xoay. Khi đó, thể tích khối tròn xoay này bằng:
A. 1/6 B. π/6
C. 8 D. π 2 /6
Thể tích vật thể tròn xoay sinh bởi hình phẳng giới hạn bởi các đường y = x 2 , y = 2 x khi quay quanh trục Ox được tính theo công thức nào dưới đây ?
A. .
B. .
C. .
D. .
Cho hai đường tròn O 1 ; 5 và O 2 ; 3 cắt nhau tại hai điểm A, B sao cho AB là một đường kính của đường tròn O 2 . Gọi (D) là hình phẳng được giới hạn bởi hai đường tròn (ở ngoài đường tròn lớn, phần gạch chéo như hình vẽ). Quay (D) quanh trục O 1 O 2 ta được một khối tròn xoay. Tính thể tích V của khối tròn xoay được tạo thành
A. V = 14 π 3
B. V = 68 π 3
C. V = 40 π 3
D. V = 36 π
Thể tích của khối tròn xoay do hình phẳng giới hạn bởi các đường y = x , trục Ox và hai đường thẳng x=1; x=4 khi quay quanh trục hoành được tính bởi công thức nào?