Áp dụng định lý Bê-du về phép chia đa thức , dư khi chia \(x^8\)cho \(x+\frac{1}{2}\)là \(\left(-\frac{1}{2}\right)^8=\frac{1}{2^8}\)
Do đó :\(x^8=\left(x+\frac{1}{2}\right)B\left(x\right)+\frac{1}{2^8}\)
\(\Rightarrow B\left(x\right)=\frac{x^8-\frac{1}{2^8}}{x+\frac{1}{2}}=\left(x-\frac{1}{2}\right)\left(x^2+\frac{1}{2^2}\right)\left(x^4+\frac{1}{2^4}\right)\)
Tiếp tục áp dụng định lý Bê-du , dư khi chia \(B\left(x\right)\)cho \(x+\frac{1}{2}\)là \(B\left(-\frac{1}{2}\right)\)
Do đó :
\(r_2=B\left(-\frac{1}{2}\right)=\left(\frac{-1}{2}-\frac{1}{2}\right)\left[\left(-\frac{1}{2}\right)^2+\frac{1}{2^2}\right]\left[\left(-\frac{1}{2^4}+\frac{1}{2^4}\right)\right]=-\frac{1}{16}\)