Số phát biểuđúng là:
a) Phép tịnh tiến biến đường thẳng thành đường thẳng song song hoặc trùng với nó
b) Phép biến hình biến đường tròn thành đường tròn có bán kính bằng nó là phép tịnh tiến
c) Phép tịnh tiến biến tứ giác thành tứ giác bằng nó
d) Phép tịnh tiến biến đường tròn thành chính nó
e) Phép đồng nhất biến mọi hình thành chính nó
f) Phép dời hình là 1 phép biến hình không làm thay đồi khoảng cách giữa hai điểm bất kì
g) Phép chiếu lên đường thẳng không là phép dời hình
h) Với bất kì 2 điểm A, B và ảnh A’, B’ của chúng qua 1 phép dời hình, ta luôn có A’B = AB’.
i) Nếu phép dời hình F biến tam giác ABC thành tam giác A’B’C’ thì trọng tâm tam giác ABC biến thành trọng tâm tam giác A’B’C’.
k) Phép tịnh tiến theo vectơ là phép đồng nhất.
l) Nếu phép dời hình biến điểm A thành điểm B ( B ≠ A ) thì nó cũng biến điểm B thành A
m) Nếu phép dời hình biến điểm A thành điểm B và biến điểm B thành điểm C thì AB = BC
A.5
B.6
C.7
D.8
Số phát biểuđúng:
1. Phép tịnh tiến biến đường thẳng thành đường thẳng song song với nó
2. Phép biến hình biến mỗiđiểm M thành chính nó dọi là phép đồng nhất
3. Phép đối xứng trục, phép quay, phép tịnh tiến đều bảo toàn khoảng cách giữa hai điểm
4. Phép đối xứng tâm biến đường thẳng thành đường thẳng song song với nó
5. Phép vị tự là một phép đồng dạng
6. Phép biến hình F’ có được nhờ thực hiện liên tiếp các phép tịnh tiến, phép quay, phép vị tự là phép đồng dạng
7. Phép biến hình F’ có được nhờ thực hiện liên tiếp các phép tịnh tiến, phép quay, phép vị tự là phép dời hình
A.4
B.5
C. 6
D.7
Trong năm phép biến hình: Tịnh tiến, đối xứng tâm, đối xứng trục, phép quay và phép vị tự. Có bao nhiêu phép biến hình luôn biến một đường thẳng thành đường thẳng song song hoặc trùng với nó?
A. 1
B. 2
C. 3
D. 4
Cho đường thẳng a cắt hai đường thẳng song song b và b’. Có bao nhiêu phép tịnh tiến biến đường thẳng a bằng chính nó và biến đường thẳng b thành đường thẳng b’?
A. Không có phép tịnh tiến nào
B. Có một phép tịnh tiến duy nhất
C. Chỉ có hai phép tịnh tiến
D. Có vô số phép tịnh tiến
Cho hai điểm phân biệt A, B và đường thẳng d. Hãy tìm một phép tịnh tiến, phép đối xứng trục, phép đối xứng tâm, phép quay, phép vị tự.
a. Biến A thành chính nó;
b. Biến A thành B;
c. Biến d thành chính nó.
Số phát biểu sai:
a) Phép đối xứng trục là một phép dời hình
b) Đường thẳng d được gọi là trục đối xứng của hình (H) nếu phép đối xứng trục Đd biến hình (H) thành chính nó.
c) Một hình có thể có một hay nhiều trục đối xứng, có thể không có trục đối xứng.
d) Qua phép đối xứng trục, đoạn thẳng AB biến thành đoạn thẳng song song và bằng nó.
e) Qua phép đối xứng trục Đa, đường tròn có tâm nằm trên a sẽ biến thành chính nó.
f) Qua phép đối xứng trục Đa, tam giác có một đỉnh nằm trên a sẽ biến thành chính nó
g) Qua phép đối xứng trục Đa, ảnh của đường thẳng vuông góc với a là chính nó
h) Nều phép đối xứng trục biến đường thẳng a thành đường thẳng b cắt a thì giao điểm của a và b nằm trên trục đối xứng
i) Hình chữ nhật có 4 trục đối xứng
A. 3
B.5
C. 7
D.9
Số phát biểuđúng:
1. Qua phép vị tự có tỉ số k ≠ 0 , đường thẳng đi qua tâm vị tự sẽ biến thành chính nó
2. Qua phép vị tự có tỉ số k ≠ 0 , đường tròn có tâm là tâm vị tự sẽ biến thành chính nó.
3. Qua phép vị tự có tỉ số k ≠ 1 , không có đường tròn nào biến thành chính nó.
4. Qua phép vị tự V(O;1), đường tròn tâm O sẽ biến thành chính nó.
5. Phép vị tự tỉ số k biến đường thẳng thành đường thẳng song song hoặc trùng với đường thẳng đó
6. Phép vị tự tỉ số k biến đoạn thẳng thành đoạn thẳng mà độ dài được nhân lên với hệ số k
7. Trong phép vị tự tâm O, tỉ số k, nếu k < 0 thì điểm M và ảnh của nó ở về hai phía đối với tâm O.
8. Mọi phép dời hình đều là phép đồng dạng với tỉ số k = 1
9. Phép hợp thành của một phép vị tự tỉ số k và một phép đối xứng tâm là phép đồng dạng tỉ số
10. Hai đường tròn bất kì luôn có phép vị tự biến đường này thành đường kia
11. Khi k = 1 , phép vị tự là phép đồng nhất
12. Phép vị tự biến tứ giác thành tứ giác bằng nó
13. Khi k = 1, phép đồng dạng là phép dời hình
14. Phép đối xứng tâm là phép đồng dạng tỉ số k = 1
A.9
B.10
C.11
D.12
Phép biến hình nào sau đây không có tính chất: ”Biến một đường thẳng thành đường thẳng song song hoặc trùng với nó”?
A. Phép tịnh tiến
B. Phép đối xứng tâm
C. Phép đối xứng trục
D. Phép vị tự
Phép biến hình nào không “biến một đường thẳng thành một đường thẳng song song hoặc trùng với nó”
A. Phép quay
B. Phép tịnh tiến
C. Phép vị tự
D. Phép đối xứng tâm
Cho hai đường thẳng d và song song với nhau. Có bao nhiêu phép tịnh tiến biến đường thẳng d thành đường thẳng ?
A. Không có phép tịnh tiến nào.
B. Có duy nhất một phép tịnh tiến.
C. Chỉ có hai phép tịnh tiến.
D. Có rất nhiều phép tịnh tiến.