1. Cho \(a^3+b^3+c^3=3abc\) (a+b+c ≠0)
Tính giá trị biểu thức:
\(M=\dfrac{a^2+b^2+c^2}{\left(a+b+c\right)^2}\)
2. Rút gọn
a) \(\dfrac{x^3+x^2-6x}{x^3-4x}\)
b) \(\dfrac{x^2+8x+7}{x^3+2x^2+x}\)
1. Trong các hàm số sau, hàm số nào là hàm số bậc nhất? Xác định a, b?
a) y = 2x – 3
b) y = -7 – 6x
c) y = 2xbình2 + 1
d) y = 3(1 - x 2 )
e) y = 2(x + 1)
f) y = 3/x +2
1)Xác định m và n để các phương trình sau đây là phương trình bậc hai
a) (m-2).x^3+3.(n^2-4n+m).x^2-4x+7=0
b) (m^2-1).x^3-(m^2-4m+3).x^2-3x+2=0
2) Cho các phương trình sau. Gọi x1 là nghiệm cho trước hãy định m để phương trình có nghiệm x1 và tính nghiệm còn lại
a) x^2-2mx+m^2-m-1 =0 (x1=1)
b) (m-1)x^2+(2m-2).x+m+3 =0 (x1=0)
c) (m^2-1).x^2+ (1-2m).x+2m-3 = 0 (x1=-1)
cho A=\(\dfrac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\dfrac{3\sqrt{x}-2}{1-\sqrt{x}}-\dfrac{2\sqrt{x}+3}{3+\sqrt{x}}\)
a, Tìm điều kiện xác định và rút gọn A
b, Tìm A khi x=\(4-2\sqrt{3}\)
c, Tìm x để A=\(\dfrac{1}{2}\)
d, Tìm x để A≥\(\dfrac{1}{2}\)
e, Chứng minh A>-5
g, Tìm xϵZ để AϵN
h, Tìm giá trị nhỏ nhất của A
Rút gọn:
a, A = √x√x−6−3√x+6+x36−xxx−6−3x+6+x36−x (đk: x ≥ 0 và x ≠ 36)
b, B = 9−x√x+3−x−6√x+9√x−3−69−xx+3−x−6x+9x−3−6 (đk: x ≥ 0 và x ≠ 9)
c, C = a+b(√a−√b)2−2√ab:(1√a−1√b)2a+b(a−b)2−2ab:(1a−1b)2 (đk: a > 0, b > 0 và a ≠ b)
d, D = (2−a√a2−√a+√a)(2−√a2−a)(2−aa2−a+a)(2−a2−a) (đk: a ≥ 0, a ≠ 2, a ≠ 4)
1, tính a/ (3+√5)(√10 - √2)√(3-√5)
b/[√2-√(3-√5)].√2
c/(√10 + √6).√(8-2√15)
2, tìm x biết a/ √(x+5)=1+√x
b/√x + √(x-1)=1
c/ √(3-x) + √(x-5)=10
3, phân tích đa thức thành nhân tử:
a/ ab+b√a+√a+1 với a ≥0
b/ x-2√xy + y với x,y ≥ 0
c/√xy + 2√x - 3√y -6 với x,y ≥ 0
4, chứng minh rằng a/ (4+√15).(√10-√6).√(4-√15)=2
b/ √a + √b > √(a+b) (a,b>0)
5, Cho √(8-a) + √(5+a) = 5 tính √[(8-a).(5+a)]
6, rút gọn √(7+2√10)-√15
P/s : mn giúp e với nha
Câu 1: Kết quả so sánh 3 và căn 8là:
A. 3 > \(\sqrt{8}\) B. 3 < \(\sqrt{8}\) C. 3 ≤ \(\sqrt{8}\) D. \(\sqrt{3}\)< \(\sqrt{8}\)
Câu 2. \(\sqrt{3x-2}\) xác định khi và chỉ khi:
A. x ≥ 0 B. x ≥ \(\dfrac{2}{3}\) C. x ≥ \(\dfrac{3}{2}\) D. x < \(\dfrac{2}{3}\)
Câu 3. \(\sqrt{\left(1-\sqrt{2}\right)^2}\) bằng:
A. \(3-2\sqrt{2}\) B. \(1-\sqrt{2}\) C. \(\sqrt{2}-1\) D. \(2\sqrt{2}+3\)
Câu 4. Kết quả của phép đưa thừa số ra ngoài dấu căn của biểu thức \(\sqrt{a^2b}\) (với a≥ 0; b ≥ 0) là:
A. \(-b\sqrt{a}\) B. \(b\sqrt{a}\) C .\(a\sqrt{b}\) D. \(-a\sqrt{b}\)
Câu 5. Khử mẫu của biểu thức \(\sqrt{\dfrac{2a}{b}}\) (với a b cùng dấu) ta được:
A. \(\dfrac{\sqrt{2ab}}{a}\) B. \(\dfrac{\sqrt{2ab}}{b}\) C. \(\dfrac{\sqrt{2ab}}{-b}\) D. \(\dfrac{\sqrt{2ab}}{\left|b\right|}\)
Câu 6: Hàm số y = \(\sqrt{5-m}.x+\dfrac{2}{3}\)là hàm số bậc nhất khi:
A. m ≠ 5 B. m > 5 C. m < 5 D. m = 5
Câu 7: Cho 3 đường thẳng (d1) : y = - 2x +1, (d2): y = x + 2, (d3) : y = 1 – 2x. Đường thẳng tạo với trục Ox góc nhọn là:
A. (d1) B. (d2) C. (d3) D. (d1) và (d3)
Câu 8: Hai đường thẳng y = -3x +4 và y = (m+1)x +m song song với nhau khi m bằng:
A. 4 B. -2 C. -3 D. -4
Câu 9. Hàm số bậc nhất nào sau đây nghịch biến?
A. y = \(7+\left(\sqrt{2}-3\right)x\) B. y = \(4-\left(1-\sqrt{3}\right)x\) C. y = \(-5-\left(1-\sqrt{2}\right)x\) D. y = 4+ x
Câu 10. Cặp đường thẳng nào sau đây có vị trí trùng nhau?
A. y=x +2 và y= -x+2 B. y= -3-2x và y= -2x-3
C. y= 2x -1 và y= 2+3x D. y=1 – 2x và y= -2x+3
Câu 11: Đường thẳng có phương trình x + y = 1 cắt đồ thị nào sau đây?
A.y+ x = -1 B. 2x + y = 1 C. 2y = 2 – 2x D. 3y = -3x +1
Câu 12: Cặp số (x; y) nào sau đây là một nghiệm của phương trình 2x – y = 1?
A.(1; -1) B. ( -1; 1) C. (3;2) D. (2; 3)
Cho hàm số y=f(x)=(m2+5)x-\(\sqrt[3]{27}\).Khẳng định nào sau đây là đúng?
A.f(-3)<f(-4) B.f(3)<f(0) C.f(3)>f(2) D.f(-3)>f(2)
Có thể giải hộ mình mấy bài toán này được không mình đang cần gấp
1) rút gọn
a) 2√2+√3 - √6
b) (a+√3) √19-8√3
c) (√2 - √3-√5) √2 +√20
Bài 2 tìm x
a) √x^2 +3 = x+1
b) (3 - √2x) (2-3√2x) = 6x -5
c) √1-3x <2
d) √4x^2 04x+1 = x-3
Bài 3
rút gọn P = ( √x / x-4 + 1 / √x +2 + 2/ 2-√x ) : (√x + 6-x / √x+2 -2 )
Những chỗ mình viết liền là chỗ đó cùng nằm trong 1 căn thức nhé.
Nhanh giúp mình với
Cảm ơn nhiều
1. Chứng minh \(\sqrt[3]{3+\sqrt[3]{3}}+\sqrt[3]{3-\sqrt[3]{3}}< 2\sqrt[3]{3}\)
2. a) Tính \(A=\frac{2b.\sqrt{x^2-1}}{x-\sqrt{x^2-1}}\) với \(x=\frac{1}{2}\left(\sqrt{\frac{a}{b}}+\sqrt{\frac{b}{a}}\right)\left(a,b>0\right) \)
b) Tính \(B=\frac{xy-\sqrt{x^2-1}.\sqrt{y^2-1}}{xy+\sqrt{x^2-1}.\sqrt{y^2-1}}\) với \(x=\frac{1}{2}\left(a+\frac{1}{a}\right);y=\frac{1}{2}\left(b+\frac{1}{b}\right)\left(a,b\ge1\right)\)
3. Cho x,y thỏa mãn \(xy\ge0\). Tính \(B=\left(\left|\sqrt{xy}+\frac{x}{2}+\frac{y}{2}\right|-\left|x\right|\right)+\left(\left|\sqrt{xy}-\frac{x}{2}-\frac{y}{2}\right|-\left|y\right|\right)\)
4. Cho \(\frac{2x+2\sqrt{x}+13}{\left(\sqrt{x}-2\right)\left(x+1\right)^2}=\frac{A}{\sqrt{x}-2}+\frac{B\sqrt{x}+C}{x+1}+\frac{D\sqrt{x}+E}{\left(x+1\right)^2}\). Tìm các số A,B,C,D,E để đẳng thức trên là đúng với mọi x