Hình như bạn ghi thiếu dấu + đó
Bạn áp dụng hằng đẳng thức \(a^2+2ab+b^2=\left(a+b\right)^2\)
Khi đó\(a=x^2+1\)
\(b=x^2+6x-1\)
Hình như bạn ghi thiếu dấu + đó
Bạn áp dụng hằng đẳng thức \(a^2+2ab+b^2=\left(a+b\right)^2\)
Khi đó\(a=x^2+1\)
\(b=x^2+6x-1\)
Phân tích đa thức sau thành nhân tử:
a) \(x^2-2xy+3x-3y+y^2-4\)
b) \(2\left(x^2-6x+1\right)^2+5\left(x^2-6x+1\right)\left(x^2+1\right)+2\left(x^2+1\right)^2\)
Phân tích đa thức thành nhân tử
\(2\left(x^2-6x+1\right)^2+5\left(x^2-6x+1\right)\left(x^2+1\right)+2\left(x^2+1\right)^2\)
Phân tích: \(2\left(x^2-6x+1\right)^2+5\left(x^2-6x+1\right)\left(x^2+1\right)+2\left(x^2+1\right)\)
Phân tích các đa thức sau thành nhân tử:
\(A=4x^2+6x\). \(B=\left(2x+3\right)^2-x\left(2x+3\right)\). \(C=\left(9x^2-1\right)-\left(3x-1\right)^2\).
\(D=x^3-16x\). \(E=4x^2-25y^2\). \(G=\left(2x+3\right)^2-\left(2x-3\right)^2\).
BT8: Tính giá trị của các biểu thức sau:
\(1,\left(2x+3\right)^2-\left(2x-1\right)^2-6x\) tại \(x=201\)
\(2,B=\left(2x+5\right)^2-4\left(x+3\right)\left(x-3\right)\)tại \(x=\dfrac{1}{20}\)
phân tích các đa thức sau thành nhân tử
a)\(\left(x^2-x+2\right)^2+\left(x-2\right)^2\)
b)\(x^4+6x^3+7x^2-6x+1\)
Phân tích đa thức sau thành nhân tử:
\(\left(6x+5\right)^2.\left(3x+2\right).\left(x+1\right)-35\)
Phân tích các đa thức sau thành nhân tử
a) \(4x^4+4x^3+5x^2+2x+1\)
b) \(\left(6x+5\right)^2\left(3x+2\right)\left(x+1\right)-3\)
c) \(\left(x-2\right)^2\left(2x-5\right)\left(2x-3\right)-5\)
d) \(x^4+6x^3+7x^2+6x+1\)
e) \(\left(x+2\right)\left(x-4\right)\left(x+6\right)\left(x-12\right)+36x^2\)
f) \(ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)+3abc\)
giải các phương trình sau
\(\left(3x-1\right)\left(2x+7\right)-\left(x+1\right)\left(6x-5\right)=\)16
\(\left(2x+3\right)^2-2\left(2x+3\right)\left(2x-5\right)+\left(2x-5\right)^2=x^2+6x+64\)
\(\left(x^4+2x^3+10x-25\right):\left(x^2+5\right)=3\)