Ta có:\(\hept{\begin{cases}\left|x-2\right|\ge0\\\left|1,5-y\right|\ge0\\\left|3-z\right|\ge0\end{cases}\Rightarrow\left|x-2\right|+\left|1,5-y\right|+\left|3-z\right|\ge0}\)
Để \(\left|x-2\right|+\left|1,5-y\right|+\left|3-z\right|=0\) thì \(\hept{\begin{cases}\left|x-2\right|=0\\\left|1,5-y\right|=0\\\left|3-z\right|=0\end{cases}\Rightarrow\hept{\begin{cases}x=2\\y=1,5\\z=3\end{cases}}}\)
Vì |x-2| ; |1,5-y| ; |3-z| đều >= 0 nên VT >= 0
=> VT= 0 <=> x-2=0;1,5-y=0;3-z=0
<=> x=2;y=1,5;z=3