I = | x + 1 | + | x + 4 | + | x + 3 |
= | x + 3 | + ( | x + 1 | + | x + 4 | )
Ta có :
+) | x + 3 | ≥ 0 ∀ x (1)
+) | x + 1 | + | x + 4 |
= | x + 1 | + | -( x + 4 ) |
= | x + 1 | + | -x - 4 | ≥ | x + 1 - x - 4 | = | -3 | = 3 (2)
Cộng (1) với (2) theo vế
=> | x + 3 | + ( | x + 1 | + | x + 4 | ) ≥ 3 ∀ x
Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left|x+3\right|=0\\\left(x+1\right)\left(-x-4\right)\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-3\\-4\le x\le-1\end{cases}}\Leftrightarrow x=-3\)
=> MinI = 3 <=> x = -3