Chọn C.
Ta có: 3 x 2 - y 2 = 12 ⇒ x 2 4 - y 2 12 = 1
a 2 = 4 b 2 = 12 c 2 = a 2 + b 2 ⇒ a = 2 b = 2 3 c = 4
=> e = c a = 2
Chọn C.
Ta có: 3 x 2 - y 2 = 12 ⇒ x 2 4 - y 2 12 = 1
a 2 = 4 b 2 = 12 c 2 = a 2 + b 2 ⇒ a = 2 b = 2 3 c = 4
=> e = c a = 2
Cho E = {x ≤ Z||x| ≤ 5}, F = {x ∈ N ||x| ≤ 5} và
B = {x ∈ Z|(x – 2)(x + 1)(2x2 – x – 3) = 0}. Chứng minh A ⊂ E và B⊂E
Cho A = {x ∈ R | x2+ x – 12 = 0 và 2x2 – 7x + 3 = 0}
B = {x ∈ Z | 3x2 – 13x + 12 =0 hoặc x2 – 3x = 0}
Viết mỗi tập hợp sau bằng cách nêu tính chất đặc trưng:
a) A = { 0; 1; 2; 3; 4 }
b) B = { 0; 4; 8; 12; 16 }
c) C = { -3; 9; -27; 81 }
d) D = { 9; 36; 81; 144 }
e) E = { 2; 3; 5; 7; 11 }
f) F = { 3; 6; 9; 12; 15 }
Cho tam giác a b c d e là các điểm sao cho AC bằng 2 lần ab OD = 1/2 OB bằng 1/3 OA Chứng minh rằng C D E thẳng hàng
Trong mpOxy, cho tam giác ABC có A(1; 1), B(3; 3), C(0;-6).
1,Tính cos A.
2,Tìm tọa độ điểm D sao cho tam giác ABD vuông cân tại D.
3,Gọi E là chân đường phân giác trong của góc A.Tìm tọa độ điểm E.
Một (E) có độ dài trục lớn bằng 6, tâm sai bằng \(\dfrac{1}{2}\), khoảng cách từ M thuộc (E) đến tiêu điểm F1 (có hoành độ âm) bằng 7.
a. Tìm khoảng cách từ M đến F2
b. Viết PTCT (E) và tìm M
Cho elip (E) đi qua điểm A(-3;0) và có tâm sai e = 5/6. Tiêu cự của (E) là:
A. 10
B. 5/3
C. 5
D. 10/3
Cho a,b,c,d,e là các số thực. Chứng minh rằng:
1) \(a^4+b^4+c^4+1\ge2a\left(a^2b-a+c+1\right)\)
2) \(a^2\left(1+b^2\right)+b^2\left(1+c^2\right)+c^2\left(1+a^2\right)\ge6abc\)
3) \(a^2+b^2+c^2+d^2+e^2\ge a\left(b+c+d+e\right)\)
[1] Cho tập hợp E = { x ∈ R | x < -3 }.
Khẳng định nào trong các khẳng định dưới đây là đúng?
A. E = ( -3; \(+\infty\) ) B. E = [ -3; \(+\infty\) ) C. E = ( -\(\infty\); -3 ) D. E = (\(-\infty\); -3 ]
Cho 3 điểm A(-3;2);B(0;4);C(1;-1)
a,3 điểm A,B,C có thẳng hàng không
b,Tính chu vi Tam giác ABC
c,Tìm tọa độ trung điểm AB,BC,CA
đ,Tìm tọa độ trọng tâm Tam giác ABC
e,Tìm tọa độ Đ sao cho ABCD là hình bình hành
f,Tìm tọa độ E sao cho ABCD là hình bình hành