1) Trong các đẳng thức sau, đẳng thức nào đúng
a) \(x\sqrt{2}=\sqrt{2x}\)
b) \(x\sqrt{2}=\sqrt{2x^2}\) với x2 > 0
c) \(x\sqrt{\dfrac{2}{x}}=\sqrt{2x^2}\)
d) \(x\sqrt{\dfrac{2}{x}}=-\sqrt{2x}\)
2) Với x > y > 0 thì biểu thức \(\dfrac{1}{y-x}\sqrt{2x^2.\left(x-y\right)^2}\) được rút gọn là
Chứng minh với mọi x, y \(\in R\), bất đẳng thức sau luôn đúng:
\(\left(x+y\right)^2+1-xy\ge\sqrt{3}\left(x+y\right)\)
chứng minh bất đẳng thức \(\frac{1}{\sqrt{AB}}>\frac{2}{A+B}với\) A,B>0 A khác B
chứng minh bất đẳng thức
1/(1+x)^2+1/(1+y)^2>1/(1+x*y)
Cho x,y,z là 3 số thực dương thỏa mãn xyz=1.Chứng minh bất đẳng thức
\(\frac{1}{\left(2x+y+z\right)^2}+\frac{1}{\left(x+2y+z\right)^2}+\frac{1}{\left(x+y+2z\right)^2}\le\frac{3}{16}\)
Với x>=0, y>=0 . Chứng minh bất đẳng thức (√x+√y)^2 >= 2√[2(x+y)√xy]
Cho số nguyên dương n. Chứng minh rằng với mọi số thực dương x, ta có bất đẳng thức:
\(\frac{x^n\left(x^{x+1}+1\right)}{x^n+1}\le\left(\frac{x+1}{2}\right)^{2n+1}\)
Tìm giá trị nhỏ nhất của x^2 / (x-1) với x >1 [bất đẳng thức Cô-si]
Chứng minh bất đẳng thức: \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)với x,y>0, suy ra: \(\frac{1}{x^2+y^2}+\frac{1}{2xy}\le1\)với \(x+y\le1\).
Mình đang cần chứng minh phần sau nhé :))