cách làm thôi nha
GỌi D là gia điểm của AM zới đường tròn (O)
CM các tam giác DBI . DBM cân
=> DI=DM
DO đó OD là đường trung bình của tam giác MIK
=> KM=2OD=2R
Zậy M thuộc đường tròn (K;2R)
tương tự đối zới các điểm N , P
cách làm thôi nha
GỌi D là gia điểm của AM zới đường tròn (O)
CM các tam giác DBI . DBM cân
=> DI=DM
DO đó OD là đường trung bình của tam giác MIK
=> KM=2OD=2R
Zậy M thuộc đường tròn (K;2R)
tương tự đối zới các điểm N , P
cho tam giác nhọn ABC nội tiếp đường tròn tâm O. M là điểm chính giữa cung BC không chứa điểm A. Gọi M' là điểm đối xứng với M qua O. Các đường phân giác trong góc B và góc C của tam giác ABC cắt đường thẳng AM' lần lượt tại E và F.
1/Chứng minh tứ giác BCEF nội tiếp được trong đường tròn
2/Biết đường tròn nội tiếp tam giác ABC có tâm I bán Kính r.
Chứng Minh: IB.IC = 2r.IM
Cho tam giác ABC (AB = AC) nội tiếp trong đường tròn tâm (O). Các đường cao AG, BE, CF cắt nhau tại H.
a) Chứng minh tứ giác AEHF nội tiếp. Xác định tâm I của đường tròn ngoại tiếp tứ giác đó.
b) Chứng minh AF.AC = AH.AG
c, chứng minh GE là tiếp tuyến đường tròn (I)
d,chứng minh GA là phân giác của góc EGF
e, gọi K là điểm đối xứng với H qua BC . chứng minh K thuộc đường tròn
cho tam giác ABC ngoại tiếp đường tròn tâm i gọi D ,E ,F lần lượt là các tiếp điểm của các cạnh BC CA AB với đường tròn tâm i .gọi m là giao điểm của AB và BC, AD cắt đường tròn tâm i tại n .gọi k là giao điểm của AC và EF .a)Chứng minh rằng IKND là tứ giác nội tiếp .b) chứng minh rằng MN là tiếp tuyến của đường tròn tâm I.
Cho tam giác ABC có đường cao AH, nội tiếp trong đường tròn tâm O, đường kính BC. Gọi E,D lần lượt là hình chiếu của H trên cạnh AB, AC.
a/ CMR: tứ giác ADHE là hình chữ nhật
b/ Chứng minh AB.AE=AD.AC
c/ Gọi I,J lần lượt k là tâm các đường tròn ngoại tiếp tam giác CDH,BEH.Xác định vị trí tương đối giữa các đường tròn (i) và (J) và (O)
d/ CMR: ID là tiếp tuyến của đường tròn ngoại tiếp tam giác AEH.
các bạn giúp tớ bài này với
cho tam giác ABC có góc A> góc B> góc C. tam giác ABC nội tiếp đường tròn tâm O. I là tâm đường tròn nội tiếp tam giác, đường phân giác góc A cắt (O) tại M, gọi E là trung điểm của BC, K là điểm đối xứng của I qua E. Đường thẳng MK cắt (O) tại P. Chứng minh P thuộc cung nhỏ AC và BP=AP+CP
Cho tam giác ABC nhọn, có H là trực tâm, nội tiếp đường tròn tâm O đường kính AM = 2R
a, Chứng minh tứ giác BHCM là hình bình hành
b, Gọi N là điểm đối xứng của M qua AB. Chứng minh tứ giác AHBN nội tiếp được trong một đường tròn
c, Gọi E là điểm đối xứng của M qua AC. Chứng minh ba điểm N, H, E thẳng hàng
d, Giả sử AB = R 3 . Tính diện tích phần chung của đường tròn (O) và đường tròn ngoại tiếp tứ giác AHBN
Cho tam giác ABC nhọn. Kẻ đường phân giác BE của tam giác ABC và S là tâm đường tròn nội tiếp tam giác ABC. Lấy P là điểm đối xứng với B qua AC. Kẻ đường phân giác CJ của góc ACP cắt PE tại R. Gọi K là điểm đối xứng P qua CJ.
a)CMR: RS//PB
b)CMR: AKRP,AKSB là tứ giác nội tiếp
c) Gọi O là tâm đường tròn ngoại tứ giác AKRP. CMR: tiếp tuyến tại K,P của (O) và CJ đồng quy
Bài 1:
Cho tam giác ABC vuông ở A, đường cao AH. Đường tròn tâm O đường kính AH cắt các cạnh AB, AC lần lượt tại M và N (A # M&N). Gọi I, P và Q lần lượt là trung điểm các đoạn thẳng OH, BH, và CH. Chứng minh:
a) Góc AHN = ACB
b) Tứ giác BMNC nội tiếp.
c) Điểm I là trực tâm tam giác APQ.
Bài 2:
Cho đường tròn (O;R) đường kính AB.Gọi C là điểm bất kỳ thuộc đường tròn đó (C # A&B). M, N lần lượt là điểm chính giữa của các cung nhỏ AC và BC. Các đường thẳng BN và AC cắt nhau tại I, các dây cung AN và BC cắt nhau ở P. Chứng minh:
a) Tứ giác ICPN nội tiếp. Xác định tâm K của đường tròn ngoại tiếp tứ giác đó.
b) KN là tiếp tuyến của đường tròn (O; R).
c) Chứng minh rằng khi C di động trên đường tròn (O;R) thì đường thẳng MN luôn tiếp xúc với một đường tròn cố định.
Cho I, O lần lượt là tâm đường tròn nội tiếp, tâm đường tròn ngoại tiếp tam giác ABC với A = 60 o . Gọi H là giao điểm của các đường cao BB'và CC'.
Chứng minh các điểm B, C, O, H, I cùng thuộc một đường tròn.