Số vải cần để làm lều là hai mặt bên và hai đầu hồi (hai đáy của lăng trụ đứng)
Diện tích hai mặt bên là : (2.5).2=20 ( m 2 )
Diện tích vải cần dùng là:20+2.2=24 ( m 2 )
Số vải cần để làm lều là hai mặt bên và hai đầu hồi (hai đáy của lăng trụ đứng)
Diện tích hai mặt bên là : (2.5).2=20 ( m 2 )
Diện tích vải cần dùng là:20+2.2=24 ( m 2 )
Một cái lều ở trại hè có dạng lăng trụ đứng tam giác (với các kích thước trên hình 146):
a) Tính thể tích khoảng không ở bên trong lều.
b) Số vải bạt cần phải có để dựng lều đó là bao nhiêu?
(Không tính các mép và nếp gấp của lều).
Hình 146
Hình vẽ là chiếc lều ở một trại hè với các kích thước trên hình ABC là tam giác vuông cân. Tính thể tích lều.
Hình 129 là một cái lều ở trại hè của học sinh kèm theo các kích thước.
a) Thể tích không khí bên trong lều là bao nhiêu?
b) Xác định số vải bạt cần thiết để dựng lều (không tính đến đường viền, nếp gấp, ... biết √5 ≈ 2,24).
1 chiếc lều trại có dạng là hình chóp tứ giác đều có các kích thước như hình vẽ bên . Hãy tính diện tích vải lều cần để phủ kín các mặt bên của lều (ko tính mép dán) biết rằng chiều cao kẻ từ đỉnh của mặt bên là 3,2m
Hình bên là một cái lều ở trại hè, có dạng một lăng trụ đứng kèm theo kích thước. Sau đây là ba kiểu mà học sinh lựa chọn.
Với yêu cầu nói trên, nên chọn kiểu nào để thể tích của lều lớn nhất
Hình bên là một cái lều ở trại hè, có dạng một lăng trụ đứng kèm theo kích thước. Sau đây là ba kiểu mà học sinh lựa chọn.
Tính diện tích của lều nhận được ánh sáng mặt trời (phần này gồm 2 hình chữ nhật và 2 tam giác)
Một lều trại có dạng hình lăng trụ đứng đặt nằm ngang. Đáy của hình lăng trụ (tức hai đầu hổi của lều) có hình dạng là các tam giác cân, cạnh đáy của các tam giác cân này tiếp giáp mặt đâ't và có độ dài 3 m, chiều cao tương ứng dài 2m. Chiều cao lăng trụ (tức chiều dài của lều trại) bằng 4m.
a) Tính diện tích bạt phủ hai mái lều.
b) Tính thê tích của lều trại
Hình bên là một cái lều ở trại hè, có dạng một lăng trụ đứng kèm theo kích thước. Sau đây là ba kiểu mà học sinh lựa chọn.
Với mỗi kiểu hãy tính thể tích của hình.
Bài 2: Một túp lều có dạng hình chóp tứ giác đều, có kích thước như hình bên a) Tính thể tích không khí bên trong chiếc lều. b) Tính số tiền mua vải phủ bốn phía và trải nền đất cho chiếc lều (coi các mép nối không đáng kể). Biết trung đoạn của hình chóp là 3,18m và giá vải là 15.000 đồng/m2 . Ngoài ra, nếu mua vải với hóa đơn trên 20 m2 thì được giảm giá 5% trên tổng hóa đơn.
hình chiếc lều vừa chụp trong bài vừa nãy và đây là đề bài.Bài 3: Người ta thiết kế chậu trồng cây có dạng hình chóp tam giác đều, biết: cạnh đáy khoảng 20cm, chiều cao khoảng 35cm, độ dài trung đoạn khoảng 21cm. a) Người ta muốn sơn các bề mặt xung quanh chậu. Hỏi diện tích bề mặt cần sơn là bao nhiêu? b) Tính thể tích của chậu trồng cây đó (làm tròn kết quả đến hàng phần trăm). Biết đường cao của mặt đáy hình chóp là 17cm.Bài 6: Cho tam giác ABC cân tại A, đường trung tuyến AM. Gọi I là trung điểm của AC và K là điểm đối xứng với M qua điểm I. a) Cho AB = AC = 10cm; BC = 12cm. Tính AM? b) Tứ giác AKCM là hình gì? Vì sao? c) Chứng minh: AKMB là hình bình hành. d) Tìm điều kiện của tam giác ABC để tứ giác AKCM là hình vuông