Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hikaru Akira

hình thang cân ABCD  ( AB //CD )  có DB là tia phân giác của góc D  , DB vuông góc BC. Biết AB = 4 cm . tính chu vi hình thang

 

Nguyễn Hoàng Minh
5 tháng 9 2021 lúc 14:27

\(\widehat{ABD}=\widehat{BDC}\left(SLT\right);\widehat{ADB}=\widehat{BDC}\left(GT\right)\\ \Rightarrow\widehat{ABD}=\widehat{ADB}\Rightarrow AD=AB=BC=4\left(cm\right)\)

(tam giác \(ADB\) cân tại \(A\))

Vì là h.thang cân mà có: BD là phân giác \(\widehat{D}\) nên AC cũng là phân giác \(\widehat{C}\) \(\Rightarrow\widehat{ACB}=\widehat{ACD}\)

Dễ thấy các góc bằng nhau: \(\widehat{BAC}=\widehat{ADB}=\widehat{BDC}=\widehat{ACD}=\widehat{ACB}=\widehat{ABD};\widehat{DBC}=\widehat{DAC}=90\)

\(\Rightarrow6\widehat{BDC}+90+90=360\Rightarrow\widehat{BDC}=30\)

\(\sin\widehat{BDC}=\dfrac{BC}{DC}\Rightarrow DC=\dfrac{BC}{\sin\widehat{BDC}}=\dfrac{4}{\sin30}=8\left(cm\right)\)

\(\Rightarrow P_{ABCD}=4+4+8+4=20\left(cm\right)\)

 

Thảo
5 tháng 9 2021 lúc 14:43

Vì AB // DC => góc ABD = góc BDC

Mà góc ADB = góc BDC ( DB là phân giác ADC )

=> góc ABD = góc ADB

=> tam giác ADB cân tại A

=> AD = AB = 4 (cm)

Mà ABCD là hình thang cân 

=> AD = BC = 4 (cm)

Có : góc BDC = 1/2 góc ADC

mà góc ADC = góc BCD ( ABCD là hình thang cân )

=> góc BDC = 1/2 góc BCD => góc BCD = 2 . BDC

Xét tam giác BCD vuông tại B có

BDC + BCD = 90

<=> BDC + 2BDC = 90

<=> BDC = 30

mà BC là cạnh đối diện góc BDC

=> BC = 1/2 BD

Hay 4 = 1/2 BD

=> BD = 8 (cm)

Áp dụng ĐL Pytago vào tam giác BDC vuông tại B được

BC2 + DC2 = BD2

<=> DC = \(\sqrt{BD^2-BC^2}\)

<=> DC= \(\sqrt{8^2-4^2}=4\sqrt{3}\)

Vậy chu vi hình thang ABCD là

AB + BC + CD + AD = 4 + 4 + 4\(\sqrt{3}\) + 4 =12 + 4\(\sqrt{3}\) ( cm )


Các câu hỏi tương tự
Nguyễn Nhật Quang
Xem chi tiết
nguyễn thảo hân
Xem chi tiết
Bulobuloa
Xem chi tiết
Minh tú Trần
Xem chi tiết
truong thi nhu ngoc
Xem chi tiết
Đỗ Khánh Linh
Xem chi tiết
Phang Ngọc Anh
Xem chi tiết
hoangtuvi
Xem chi tiết
Nguyễn Quang Hải
Xem chi tiết