sao đường thẳng không đi lại đi đường vòng làm gì?
CM theo tính các đường // ra ngay mà
sao đường thẳng không đi lại đi đường vòng làm gì?
CM theo tính các đường // ra ngay mà
Hình thang ABCD (AB // CD) có hai đường chéo AC và BD cắt nhau tại O. Đường thẳng qua O song song với đáy AB cắt các cạnh bên AD, BC theo thứ tự tại M, N. Chứng minh rằng OM = ON.
Hình thang ABCD ( AB // CD) có hai đường chéo cắt nhau tại O. Đường thẳng qua o và song song với đáy AB cắt các cạnh bên AD, BC theo thứ tự tại M và N.
a. Chứng minh rằng OM = ON.
Hình thang ABCD (AB // CD) có hai đường chéo cắt nhau tại O. Đường thẳng qua O và song song với đáy AB cắt các cạnh bên AD, BC theo thứ tự ở M và N.
a, Chứng minh rằng OM = ON.
b, Chứng minh rằng \(\frac{1}{AB}+\frac{1}{CD}=\frac{2}{MN}\)
c, Biết SAOB= 20132 (đơn vị diện tích); SCOD= 20142 (đơn vị diện tích). Tính SABCD.
Cho hình thang ABCD (AB // CD). Hai đường chéo AC và BD cắt nhau tại O. Đường thẳng a qua O và song song với đáy của hình thang cắt các cạnh AD, BC theo thứ tự tại E và F (h.26).
Chứng minh rằng OE = OF
Cho hình thang ABCD (AB//CD). Hai đường chéo AC và BDcắt nhau tại O . đường thẳng A đi qua O và song song với đáy của hình thang cách các cạnh bên AD,BC theo thứ tự tại E và F chứng minh rằng OE=OF
Hình thang ABCD( AB//CD) có hai đường chéo cắt nhau tại O. Đường thẳng qua O và song song với đáy AB cắt các cạnh bên AD,BC theo thứ tự M và N
a. Chứng minh rằng OM=ON
bChứng minh rằng 1/AB+1/CD=2/MN
c Biết SAOB=2010*2; SCOD= 2011*2. TÍNH sabcd
Cho hình thang ABCD (AB //CD). Hai đường chéo AC và BD cắt nhau tại O. Đường thẳng A qua O và song song với đáy của hình thang cắt các cạnh AD, BC theo thứ tự E và F
Chứng minh rằng OE = OF.
Cho hình thang ABCD có hai đáy là AB và CD. Một đường thẳng song song với AB cắt các cạnh bên AD, BC theo thứ tự ở E và F.
a) Chứng minh ED/AD + BF/BC = 1
b) Các đường chéo của hình thang cắt nhau tại O. Chứng minh OA.OD = OB.OC.
giúp mình với
mình đang cần gấp
Bài 1: Cho hình thang ABCD ( AB // CD), đường chéo AC và BD cắt nhau tại O. Đường thẳng qua O và song song với AB cắt các cạnh bên AD, BC lần lượt tại M, N.
1. Chứng minh: OM = ON 2. Chứng minh: (AM/AD)+(CN/CB)=1