Cho hình chóp S.ABCD có đáy ABCD là hình bình hành và có thể tích V. Gọi E là điểm trên cạnh SC sao cho EC = 2ES. Gọi α là mặt phẳng chứa đường thẳng AE và song song với đường thẳng BD, α cắt hai cạnh SB, SD lần lượt tại hai điểm M, N. Tính theo V thể tích khối chóp S.AMEN.
A. V 6
B. V 27
C. V 9
D. V 12
Cho điểm M nằm trên cạnh SA, điểm N nằm trên cạnh SB của hình chóp tam giác S. ABC sao cho S M M A = 1 2 , S N N B = 2 . Mặt phẳng (α) qua MN và song song với SC chia khối chóp thành 2 phần. Gọi V₁ là thể tích của khối đa diện chứa A, V₂ là thể tích của khối đa diện còn lại. Tính tỉ số V 1 V 2
A. V 1 V 2 = 4 5
B. V 1 V 2 = 5 4
C. V 1 V 2 = 5 6
D. V 1 V 2 = 6 5
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi K,M lần lượt là trung điểm của các đoạn thẳng SA, SB, α là mặt phẳng qua K song song với AC và AM. Mặt phẳng α chia khối chóp S.ABCD thành hai khối đa diện. Gọi V1 là thể tích của khối đa diện chứa đỉnh S và V2 là thể tích khối đa diện còn lại. Tính tỉ số V 1 V 2 .
Cho tứ diện ABCD. M thuộc đoạn AB và AM = 1 3 AB. Gọi ( α ) là mặt phẳng qua M, ( α )// AC, ( α )// BD. Gọi V 1 , V 2 là 2 phần thể tích tứ diện được chia ra bởi ( α ). Tính k = V 1 V 2 (V1 là thể tích đa diện có chứa đỉnh A).
A. k = 5 9
B. k = 1 3
C. k = 12 15
D. k = 7 20
cho hình chóp SABC có SA vuông góc với đáy. Gọi thể tích của SABC=V.
1)Gọi M là hình chiếu của A lên SB a)VSAMC=1/2V b)VSAMC=1/3V c)VSAMC=(SA/SB)².V
2)Gọi M,N lần lượt là hình chiếu của A lên SB,SC
A)VSAMN=1/4V
B)VSAMN=1/9V
C)VSAMN=(SA/SB)².(SA/SC)²
Cho hình chóp S.ABC, có đáy là tam giác vuông ở A, SC vuông góc với đáy, AC = a/2, SC = BC = a 2 . Mặt phẳng (P) qua C vuông góc với SB cắt SA, SB lần lượt tại A’, B’. Gọi V là thể tích hình chóp S.ABC, V’ là thể tích hình chóp S.A’B’C. Tính tỉ số k = V'/V.
A. k = 1 3
B. k = 2 4
C. k = 4 9
D. k = 2 3
Cho hình chóp S.ABCD có đáy là hình bình hành và có thể tích là V. Điểm P là trung điểm của SC, một mặt phẳng qua AP cắt hai cạnh SD và SB lần lượt tại M và N. Gọi V 1 là thể tích của khối chóp S.AMPN. Tìm giá trị nhỏ nhất của V 1 V ?
A. 1 8
B. 2 3
C. 3 8
D. 1 3
Cho hình chóp tam giác đều SABC có chiều cao α , cạnh bên bằng 2 α . Tính thể tích V của khối chóp SABC
Cho hình chóp S.ABC có đáy là tam giác vuông cân ở B, AC=a 2 , SA ⊥ (ABC), SA=a. Gọi G là trọng tâm tam giác SBC, mặt phẳng ( α ) đi qua AG và song song với BC cắt SB, SC lần lượt tại M, N. Tính thể tích V của khối chóp S.AMN.