Cho hình chóp SABC có SB=SC=BC=CA=a. Hai mặt (ABC) và (ASC) cùng vuông góc với (SBC). Tính thể tích hình chóp.
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A. Biết SA vuông góc với mặt phẳng đáy và SB = a 10 , BC = 2a, SC = 2a 3 . Thể tích khối chóp S.ABC là:
A . 3 a 3 2
B . 3 a 3 2
C . 3 a 3
D . a 3
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại C ; SA vuông góc với đáy; SC = a. Gọi α là góc giữa hai mặt phẳng (SBC) và (ABC). Tính để thể tích khối chóp S.ABC lớn nhất
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B với AB = a và B A C ^ = 30 0 . Hai mặt phẳng (SAB) và (SAC) cùng vuông góc với mặt phẳng (ABC). Tính khoảng cách d từ điểm A đến mặt phẳng (SBC) biết khối chóp S.ABC có thể tích bằng a 3 3 36
A . d = a 2 5
B . d = a 3
C . d = a 5 5
D . d = a 3 6
Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, SA vuông góc với đáy ABC, góc giữa hai mặt phẳng (SBC) và (ABC) bằng 60°. Tính thể tích V của khối chóp S.ABC.
Cho hình chóp S.ABC có mặt phẳng (SAC) vuông góc với đáy (ABC); SA = AB = a, AC = 2a và A S C ^ = A B C ^ = 90 0 . Tính theo a thể tích khối chóp S.ABC.
A . a 3 2 4
B . 3 a 3 4
C . a 3 4
D . a 3 3 4
Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, SA vuông góc với mặt đáy. Gọi M là trung điểm của BC. Mặt phẳng (P) đi qua A và vuông góc với SM cắt SB, SC lần lượt tại E, F. Biết Tính thể tích V của khối chóp S.ABC
Cho hình chóp S.ABC có đáy ABC vuông tại A, A B = a , A C = a 3 Tam giác SBC đều và nằm trong mặt phẳng vuông góc với mặt đáy. Tính thể tích khối chóp S.ABC.
A. 2 a 2 3
B. 3 a 2 2
C. a 3 3 2
D. a 2 2
Cho hình chóp S.ABC có tam giác SBC là tam giác vuông cân tại S, SB =2a và khoảng cách từ A đến mặt phẳng (SBC) bằng 3a. Tính thể tích V của khối chóp S.ABC
A. V = 2 a 3
B. V = 4 a 3
C. V = 6 a 3
D. V = 12 a 3