Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Minh Sang

\(\hept{\begin{cases}x+y+z=9\\\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\\xy+yz+xz=27\end{cases}}\)

T.Ps
31 tháng 8 2019 lúc 19:52

#)Giải :

\(ĐK:x,y,z\ne0\)

\(\hept{\begin{cases}x+y+z=9\\\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\\xy+yz+xz=27\end{cases}\Leftrightarrow\hept{\begin{cases}x+y+z=9\\xy+yz+xz=xyz\\xy+yz+xz=27\end{cases}\Leftrightarrow}\hept{\begin{cases}x+y+z=9\\xyz=27\\xy+yz+xz=27\end{cases}}}\)

Coi x,y,z lần lượt là 3 nghiệm x1,x2,x3 của một pt bậc 3

Theo công thức Vi-ét, ta có : \(\hept{\begin{cases}x_1+x_2+x_3=9\\x_1x_2x_3=27\\x_1x_2+x_2x_3+x_1x_3=27\end{cases}\Leftrightarrow x_1,x_2,x_3}\) là ba nghiệm của pt

\(X^3-9X^2+27X-27=0\Leftrightarrow X=3\)

Vậy x = y = z = 3

\(\hept{\begin{cases}x+y+z=9\left(1\right)\\\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\left(2\right)\\xy+yz+xz=27\left(3\right)\end{cases}}\)

Từ (2) \(\Rightarrow\frac{xy+yz+xz}{xyz}=1\Rightarrow xyz=27\)

Ta có \(\left(x-3\right)\left(y-3\right)\left(z-3\right)=xyz+9\left(x+y+z\right)-3\left(xy+yz+xz\right)-27\)

\(=27+9.9-3.27-27=0\)

\(\Rightarrow x=3\)hoặc\(y=3\) hoặc \(z=3\)

Xét x=3\(\Rightarrow\hept{\begin{cases}y+z=6\\yz=9\end{cases}\Rightarrow}y=z=3\)

Tương tự với các TH còn lại

Vậy x=y=z=3


Các câu hỏi tương tự
Tuấn
Xem chi tiết
nguyễn Thùy linh
Xem chi tiết
Blue Moon
Xem chi tiết
Nguyễn Thu Huyền
Xem chi tiết
Thanh Tâm
Xem chi tiết
Trung Phan Bảo
Xem chi tiết
Nguyễn Ngọc Tho
Xem chi tiết
thu thủy nguyễn thị
Xem chi tiết
Nguyễn Phúc Thiên
Xem chi tiết