A! anh em lớp 12 đấy khi nào em lên Hoà Bình đã
A! anh em lớp 12 đấy khi nào em lên Hoà Bình đã
Giải hệ phương trình: \(\hept{\begin{cases}log_3x+\sqrt{\left(log_3x-1\right)^2+1}=\frac{y}{3}+1\\log_3y+\sqrt{\left(log_3y-1\right)^2+1}=\frac{x}{3}+1\end{cases}}\)
Giai hệ phương trình sau :
\(\hept{\begin{cases}3^{-x}.2y=1152\\log_{\sqrt{5}}\left(x+y\right)=2\end{cases}}\)
Tí nữa ra đáp án
giải phương trình
c)\(\begin{cases} 3x+5y=1\\ 2x-y=-8 \end{cases} \)d)\(\begin{cases} \dfrac{1}{x}-\dfrac{1}{y}=1\\ \dfrac{3}{x}+\dfrac{4}{y}=5 \end{cases} \)
Cho hàm số y=f(x) xác định và liên tục trên R thõa mãn các điều kiện sau:
\(\hept{\begin{cases}f\left(x\right)>0,\forall x\in R\\f'\left(x\right)=-e^xf^2\left(x\right),\forall x\in R\\f\left(o\right)=\frac{1}{2}\end{cases}}\)
Hãy tính \(f\left(ln2\right)\).
Câu 1: Cho đường thẳng (d) xác định bởi \(\hept{\begin{cases}y=-1\\x+z=0\end{cases}}\)và hai mặt phẳng (P): \(x+2y+2z+3=0,\)(Q): \(x+2y+2z+7=0\).
(Chọn đáp án đúng) Phương trình mặt cầu có tâm thuộc (d) và tiếp xúc với (P), (Q) là:
\(a)\left(x+3\right)^2+\left(y+1\right)^2+\left(z+3\right)^2=\frac{4}{9}\)
\(b)\left(x+3\right)^2+\left(y+1\right)^2+\left(z-3\right)^2=\frac{4}{9}\)
\(c)\left(x-3\right)^2+\left(y+1\right)^2+\left(z+3\right)^2=\frac{4}{9}\)
\(d)\left(x-3\right)^2+\left(y-1\right)^2+\left(z+3\right)^2=\frac{4}{9}\)
Câu 2: Cho mặt cầu (S): \(x^2+y^2+z^2-2x+2y+1=0\)và điểm \(M\left(0;-1;0\right).\)
Phương trình mặt phẳng (P) tiếp xúc với (S) tại M là:
\(a)2x+y-z+1=0.\) \(b)x=0.\)
\(c)-x+y+2z+1=0.\) \(d)x+y+1=0\)
Câu 3: Trong khai triển \(f\left(x\right)=\frac{1}{256}\left(2x+3\right)^{10}\)thành đa thức, hệ số của x8 là:
\(a)103680.\) \(b)405.\) \(c)106380.\) \(d)504.\)
Câu 4: Tổng các nghiệm của phương trình \(2^{x^2-3}.5^{x^2-3}=0,01.\left(10^{x-1}\right)^3\)là:
\(a)3.\) \(b)5.\) \(c)0.\) \(d)2\sqrt{2}.\)
Giải các hệ pt, bất pt sau:
a, \(\left\{{}\begin{matrix}2x-2y+z=3\\2x+y-2z=-3\\3x-4y-z=4\end{matrix}\right.\)
b, \(\left\{{}\begin{matrix}2x-3y\ge2\\3x+2y< 4\\x-2y\ge5\end{matrix}\right.\)
Trong không gian OxyzOxyz cho hai điểm A(2;4;3)A(2;4;3) và B(2;7;1)B(2;7;1). Trong các phương trình dưới đây, phương trình nào là phương trình tham số của đường thẳng ABAB? (với t\in \Rt∈R)
A,\left\{{}\begin{matrix}x=2+2t\\y=7+4t\\z=1+3t\end{matrix}\right.⎩⎪⎨⎪⎧x=2+2ty=7+4tz=1+3t
B,\left\{{}\begin{matrix}x=4\\y=3+3t\\z=2-2t\end{matrix}\right.⎩⎪⎨⎪⎧x=4y=3+3tz=2−2t
c,\left\{{}\begin{matrix}x=2\\y=4-3t\\z=3+2t\end{matrix}\right.⎩⎪⎨⎪⎧x=2y=4−3tz=3+2t
d,\left\{{}\begin{matrix}x=2+2t\\y=4+7t\\z=3+t\end{matrix}\right.⎩⎪⎨⎪⎧x=2+2ty=4+7tz=3+t
Giải hệ bất phương trình bậc nhất hai ẩn
\(\hept{\begin{cases}y-2>0\\x+1< 0\end{cases}}\)
\(Chox,y>0\)
\(\log_{\sqrt{3}}\left[\dfrac{2x+y}{4x^2+y^2+2xy+2}\right]=2x\left(2x-3\right)+y\left(y-3\right)+2xy\)
Tính \(P_{Max}=\dfrac{6x+2y+1}{2x+y+6}\)