giải hệ phương trình bằng phương pháp thế
\(â,\hept{\begin{cases}3x^2+\left(6-y\right)x^2-2xy=0\\x^2-x+y=-3\end{cases}}\)
\(b,\hept{\begin{cases}x^2+y^2+xy+1=4y\\y\left(x+y\right)^2=2x^2+7y+2\end{cases}}\)
\(c,\hept{\begin{cases}x^4+2x^3y+x^2y^2=2x+9\\x^2+2xy=6x+6\end{cases}}\)
\(d,\hept{\begin{cases}x\sqrt{y+1}=1\\x^2y=y-1\end{cases}}\)
giải các hệ phương trình sau
a) \(\hept{\begin{cases}x^2+y^2-2xy=1\\2x^2+2y^2-2xy-y=0\end{cases}}\)
b)\(\hept{\begin{cases}xy+2x-y-2=0\\xy-3x+2y=0\end{cases}}\)
giải hệ phương trình
1)\(\hept{\begin{cases}x^2+xy+y^2=3\\x^3+2y^3=y+2x\end{cases}}\)
2) \(\hept{\begin{cases}\frac{y^2+1}{y}=\frac{x^2+1}{x}\\x^2+3y^2=4\end{cases}}\)
3)\(\hept{\begin{cases}x^2+y^4-2xy^3=0\\x^2+2y^2-2xy=1\end{cases}}\)
Giải hệ phương trình:
1.\(\hept{\begin{cases}x^2+y^2+xy=1\\x^3+y^3=x+3y\end{cases}}\)
2.\(\hept{\begin{cases}x+y=\sqrt{4z-1}\\y+z=\sqrt{4x-1}\\z+x=\sqrt{4y-1}\end{cases}}\)
3.\(\hept{\begin{cases}\left(x+y\right)\left(x^2-y^2\right)=45\\\left(x-y\right)\left(x^2+y^2\right)=85\end{cases}}\)
4.\(\hept{\begin{cases}x^3+2y^2-4y+3=0\\x^2+x^2y^2-2y=0\end{cases}}\)
5. \(\hept{\begin{cases}2x^3+3x^2y=5\\y^3+6xy^2=7\end{cases}}\)
giải hpt:
1, \(\hept{\begin{cases}x^2+2y-4x=0\\4x^2-4xy^2+y^4-2y+4=0\end{cases}}\)
2. \(\hept{\begin{cases}x^3-y^3=9x+9y\\x^2-y^2=3\end{cases}}\)
Giải hệ pt:
a)\(\hept{\begin{cases}x+3y-xy=3\\x^2_{ }+y^2+xy=3\end{cases}}\)
b)\(\hept{\begin{cases}x^2-xy+y^2=1\\x^2+2xy-y^2-3x-y=-2\end{cases}}\)
c)\(\hept{\begin{cases}x^2+y^2=2x^2y^2\\\left(x+y\right)\left(1+xy\right)=4x^2y^2\end{cases}}\)
d)\(\hept{\begin{cases}x^2-xy+y^2=1\\x^2+xy+2y^2=4\end{cases}}\)
GIẢI BẤT CỨ CÂU NÀO CŨNG ĐƯỢC NHÉ Ạ, EM CẢM ƠN TRƯỚC =))
f)
\(\hept{\begin{cases}x^3+y^3=65\\x^2y+xy^2=20\end{cases}}\)
g)
\(\hept{\begin{cases}x^2-2y^2=2x+y\\y^2-2x^2=2y+x\end{cases}}\)
h)
\(\hept{\begin{cases}x^2+2xy+3y^2=9\\2x^2+2xy+y^2=2\end{cases}}\)
i)
\(\hept{\begin{cases}x^3+y^3-xy^2=1\\4x^4+y^4=4x+y\end{cases}}\)
a)\(\hept{\begin{cases}|x-2|+2|y-1|=9\\x+|y-1|=-1\end{cases}}\)
b)\(\hept{\begin{cases}x^2+y^2+\frac{2xy}{x+y}=1\\\sqrt{x+y}=x^2-y\end{cases}}\)
c)\(\hept{\begin{cases}x^2\\x^3-y^3=35\end{cases}+xy+y^2=7}\)
d)\(\hept{\begin{cases}\left(x+y\right)^2\\x-y-3=0\end{cases}-5\left(x+y\right)+4=0}\)
e)\(\hept{\begin{cases}x^2+\frac{4}{y^2}=4\\x-\frac{2}{y}-\frac{4x}{y}=-2\end{cases}}\)
\(1,\hept{\begin{cases}\sqrt{x}+\sqrt{y}=3\\\sqrt{x+5}+\sqrt{y+3}=5\end{cases}}\)
\(2,\hept{\begin{cases}x\left(x+y+1\right)-3=0\\\left(x+y\right)^2-\frac{5}{x^2}+1=0\end{cases}}\)
\(3,\hept{\begin{cases}xy+x+y=x^2+2y^2\\x\sqrt{2y}-y\sqrt{x-1}=2x-2y\end{cases}}\)
\(4,\hept{\begin{cases}xy+x+1=7y\\x^2y^2+xy+1=13y^2\end{cases}}\)
\(5,\hept{\begin{cases}2y\left(x^2-y^2\right)=3x\\x\left(x^2+y^2\right)=10y\end{cases}}\)