Mih chỉ lm đc câu R thôi:
\(R=\sqrt{5+\sqrt{13+\sqrt{5+\sqrt{13+\sqrt{5...}}}}}\)
\(\Rightarrow R^2=5+\sqrt{13+\sqrt{5+\sqrt{13+\sqrt{5...}}}}\)
\(\Rightarrow\left(R^2-5\right)^2=13+\sqrt{5+\sqrt{13+\sqrt{5...}}}\)
\(\Rightarrow R^4-10R^2+12=R\) (Vì R là lặp lại vô hạn cách viết nên nếu mũ chẵn lên thì R vẫn là R)
\(\Rightarrow\left(R-3\right)\left(R^3+3R^2-R-4\right)=0\)
Mà \(R^3+3R^2-R-4=\left(R+3\right)\left(R-1\right)\left(R+1\right)-1>0\forall R>\sqrt{5}\)
Nên ta dễ dàng suy ra đc R-3=0 => R=3
\(P=\sqrt{\left(\sqrt{3}\right)^2+\left(\sqrt{2}\right)^2+1^2+2.\sqrt{3}.\sqrt{2}+2.\sqrt{3}.1+2.\sqrt{2}.1}=\sqrt{\left(\sqrt{3}+\sqrt{2}+1\right)^2}\)
\(=\sqrt{3}+\sqrt{2}+1\)
\(T^2=6\sqrt{6\sqrt{6\sqrt{6\sqrt{6\sqrt{6...}}}}}=6T\Leftrightarrow T^2-6T=0\Leftrightarrow\orbr{\begin{cases}T=0\\T=6\end{cases}}\)
Vì T > 0 nên T = 6.