Đáp án C
Phương pháp
Sử dụng công thức số hạng tổng quát của nhị thức:
Đáp án C
Phương pháp
Sử dụng công thức số hạng tổng quát của nhị thức:
Trong khai triển nhị thức x + 1 x n , x ≠ 0 , hệ số của số hạng thứ 3 lớn hơn hệ số của số hạng thứ 2 là 35. Tìm số hạng không chứa x trong khai triển nói trên.
A. 225
B. 252
C. 522
D. 525
Trong khai triển nhị thức x + 1 x n , x ≠ 0 hệ số của số hạng thứ 3 lớn hơn hệ số của số hạng thứ 2 là 35. Tìm số hạng không chứa x trong khai triển nói trên.
A. 225
B. 252
C. 522
D. 525
Hệ số của số hạng chứa x6 trong khai triển nhị thức (với x ≠ 0 ) là:
A. - 220 729
B. 220 729 x 6
C. - 220 729 x 6
D. 220 729
Tìm hệ số của số hạng không chứa x trong khai triển nhị thức x - 1 x n với x ≠ 0 , biết n là số tự nhiên thỏa mãn C n 2 C n n - 2 + 2 C n 2 C n 3 + C n 3 C n n - 3 = 100
A. 6
B. 7
C. 8
D. 9
Tìm hệ số của số hạng chứa x 8 trong khai triển nhị thức Newton của 1 x 3 + x 5 n , biết rằng C n + 4 n + 1 - C n + 3 n = 7 ( n + 3 ) . (với n là số nguyên dương và x > 0)
A. 400
B. 480
C. 495
D. 0
Hệ số của số hạng chứa x 7 trong khai triển nhị thức Newton x - 1 x 2 10 là
Tổng các hệ số nhị thức Niu – tơn trong khai triển (1+x)3n bằng 64. Số hạng không chứa x trong khai triển 2 n x + 1 2 n x 2 3 n là:
A. 360
B. 210
C. 250
D. 240
Biết rằng trong khai triển trên tổng hệ số của ba số hạng đầu bằng 161. Tìm a
Gọi x là hệ số không chứa x trong khai triển nhị thức Niu – tơn
x 2 - 2 x n = C n 0 x 2 n + C n 1 x 2 n - 1 - 2 x + . . . + C n n - 1 x 2 - 2 x n - 1 + C n n - 2 x n n ∈ ℕ *
Biết rằng trong khai triển trên tổng hệ số của ba số hạng đầu bằng 161. Tìm a
A. 11520
B. 11250
C. 12150
D. 10125
Cho n là số nguyên dương thỏa mãn 5 C n n - 1 - C n 3 = 0 . Tìm hệ số của số hạng chứa x 5 trong khai triển nhị thức Niu-tơn của x 2 2 - 1 x n , x ≠ 0
A. - 35 16 x 5
B. - 35 16
C. - 35 2 x 2
D. 35 16 x 5