Cho hệ phương trình: a2x + y = 1 và x + y = a
a, giải hệ phương trình với a = -2
b, tìm các giá trị của a để hệ phương trình có vô số nghiệm
c, tìm a để hệ phương trình có nghiệm duy nhất (x,y) thỏa mãn x,y đều nguyên
Cho hệ phương trình bậc nhất hai ẩn:
I a x + b y = c a ' x + b ' y = c '
Với a, b, c, a’, b’, c’ ≠ 0. Hệ (I) có nghiệm duy nhất khi:
A. a a ' = b b ' ≠ c c '
B. a a ' ≠ b b '
C. a a ' = b b ' = c c '
Cho hệ phương trình :\(\hept{\begin{cases}ax-y=2a\\x-ay=3+a\end{cases}}\)(a là tham số )
a) giải hệ phương trình theo a. Áp dụng tìm nghiệm khi a =\(1-\sqrt{2}\)
b) Tìm a để hệ phương trình có nghiệm duy nhất thỏa mãn \(x+y=\frac{a^2-5}{a-1}\)
c) Tìm a \(\in\)Z để hệ phương trình có nghiệm duy nhất (x;y) nguyên . Tìm giá trị các nghiệm nguyên đó
Cho hệ phương trình \(\hept{\begin{cases}\left(a+1\right)x-y=a+1\\x+\left(a-1\right)=2\end{cases}}\)với m là tham số
a) giải hệ phương trình với m=2
b) tìm a để hệ có nghiệm duy nhất
c) tìm giá trị nguyên của a để hệ có nghiệm duy nhất thỏa mãn x+y đạt GTNN
Hệ phương trình \(\left\{{}\begin{matrix}ax+by=c\\a'x+b'y=c'\end{matrix}\right.\) có nghiệm duy nhất khi
A.\(\dfrac{a}{a'}=\dfrac{b}{b'}\) B.\(\dfrac{b}{b'}\ne\dfrac{c}{c'}\) C.\(\dfrac{a}{a'}=\dfrac{b}{b'}\ne\dfrac{c}{c'}\) D.\(\dfrac{a}{a'}\ne\dfrac{b}{b'}\)
bài 1: Trong buổi lao động, 15 học sinh nam và nữ đã trồng được tất cả 180 cây. Biết rằng số cây các bạn nam trồng được số cây các bạn nữ trồng và mỗi bạn nam trồng nhiều hơn mỗi bạn nữ là 5 cây. Tính số bạn nam và nữ
bài 2:
1. Cho hệ phương trình \(\hept{\begin{cases}ax-y=2\\x+ay=3\end{cases}}\)
a) tìm a để hệ phương trình có nghiệm duy nhất và tìm nghiệm đó
b) tìm a để hệ phương trình vô nghiệm
2. cho hệ phương trình \(\hept{\begin{cases}ax-2y=a\\-2x+y=a+1\end{cases}}\)
a) tìm a để hệ phương trình có nghiệm duy nhất, khi đó tính x;y theo a
b) tìm a để hệ phương trình có nghiệm duy nhất thỏa mãn: x-y=1
c) tìm a để hệ phương trình có nghiệm duy nhất thỏa mãn x và y là các số nguyên
bài 3:
1.Chứng minh với mọi giá trị của m thì hệ phương trình \(\hept{\begin{cases}\left(m-1\right)x+y=2\\mx+y=m+1\end{cases}}\)(m là tham số) luôn có nghiệm duy nhất (x;y) thỏa mãn: \(2x+y\le3\)
2. Xác định giá trị của m để hệ phương trình \(\hept{\begin{cases}mx+5y=3\\x-3y=5\end{cases}}\)vô nghiệm
Bài 1: Cho hệ phương trình: \(\hept{\begin{cases}x+y=2a-1\\x^2+y^2=a^2+2a-3\end{cases}}\)
Giả sử (x; y) là nghiệm của hệ phương trình. Xác định a để xy đạt GTNN. Tìm GTNN đó.
Bài 2: Giải hệ phương trình: \(\hept{\begin{cases}\left(c+a\right)y+\left(a+b\right)z-\left(b+c\right)x=2a^3\\\left(a+b\right)z+\left(b+c\right)x-\left(c+a\right)y=2b^3\\\left(b+c\right)x+\left(c+a\right)y-\left(a+b\right)z=2c^3\end{cases}}\)
Cho hệ phương trình:
\(\hept{\begin{cases}2x+my=5\\3x-y=0\end{cases}}\)
a, Giải hệ phương trình khi m=0.
b, Tìm m để hệ có nghiệm duy nhất.
c, Tìm m để hệ phương trình có nghiệm x,y thỏa mãn: x - y = 1.
Cho hệ phương trình: 2x-y=m+1 x+my=2 a, giải hệ khi m=√2 b, Tìm m để hệ có nghiệm duy nhất
Cho hệ phương trình
(a+1)x - y=3
ax-y=a
a)Giải hệ phương trình khi a = - căn 2
b) Xác định giá trị của a để hệ có nghiệm duy nhất thỏa mãn điều kiện x+y>0
Nếu có thể giải chi tiết giúp mình nhé