\(ab+ba=(10a+b)+(10b+a)\)
\(=10a+b+10b+a\)
\(=11a+11b\)
\(=11\left(a+b\right)\)
\(a+b\inℕ\Rightarrow ab+ba⋮11\)
\(A=2+2^2+2^3+\cdot\cdot\cdot+2^{2008}\)
\(\Rightarrow2A=2^2+2^3+2^4+\cdot\cdot\cdot+2^{2009}\)
\(\Rightarrow2A-A=\left(2^2+\cdot\cdot\cdot2^{2009}\right)-\left(2+\cdot\cdot\cdot+2^{2008}\right)\)
\(\Rightarrow A=2^{2009}-2\)