chứng minh rằng biểu thức không thuộc vào biến x:
\(A=\left(3\text{x}-5\right)\left(2\text{x}+11\right)-\left(2\text{x}+3\right)\left(3\text{x}+7\right)\)
\(\text{Chứng minh rằng nếu }x_1\text{ và }x_2\text{ là hai nghiệm khác nhau của đa thức :}\)
\(P\left(x\right)=ax^2+bx+c\left(a\ne0\right)\text{ thì }P\left(x\right)=a\left(x-x_1\right)\left(x-x_2\right)\)
Cho các số thực không âm a,b,ca,b,c thoả mãn a+b+c=1a+b+c=1. Chứng minh rằng :
\(\sqrt{a+\frac{\left(b-c\right)^2}{4}}+\sqrt{b+\frac{\left(c-a\right)^2}{4}}+\sqrt{c+\frac{\left(a-b\right)^2}{4}}\le\sqrt{3}+\left(1-\frac{\sqrt{3}}{2}\right)\left(\text{|
}a-b\text{|
}\right)+\text{|
}b-c\text{|
}+\text{|
}c-a\text{|
}.\)
Chứng minh rằng biểu thức sau không phụ thuộc vào giá trị x:
\(B=2\left(x^3+1\right)9\text{x}^2-3\text{x}+1-54\text{x}^3\)
Chứng minh BDT: cosA + cosB + cosC <= 3/2 bằng nhiều cách trong đó A, B, C là ba góc của một tam giác.
1/ a. Chứng minh công thức Hê-rông tính diện tích tam giác theo 3 cạnh a,b,c S=\(\sqrt{\text{p(p−a)(p−b)(p−c)}}\) (p là nửa chu vi)
b. Áp dụng chứng minh rằng nếu S=\(\frac{1}{4}\left(a+b-c\right)\left(a+c-b\right)\) thì tam giác đó là tam giác vuông
Chứng minh rằng với a+b+c=0 thì\(a^4\text{+}b^4+c^4=2\left(ab\text{+}bc\text{+}ac\right)^2\)
Cho biểu thức:\(P=\left(\dfrac{2\text{x}}{x^2-9}-\dfrac{1}{x+3}\right):\left(\dfrac{2}{x}-\dfrac{x-1}{x^2-3\text{x}}\right)v\text{ới}x\ne\pm3;x\ne0;x\ne5\)
1, Chứng minh \(P=\dfrac{x}{x-5}\)
cho a+b=1. Tính gia trị biểu thức:
\(\text{a}=\text{a}^3+b^3+3\text{a}b\)
\(B=4\left(\text{a}^3+b^3\right)-6\left(\text{a}^2+b^2\right)\)