Cho hàm số y = 1 x - 1 k h i x ≤ 0 x + 2 k h i x > 0 Tập xác định của hàm số là:
A. [ - 2 ; + ∞ )
B. R\{1}
C. R
D. Tất cả sai
[2] Cho hai tập hợp A = { x ∈ R | 3x -1 >= 2; 3-x > 1 }; B = [ 0; 3]. Khẳng định nào sau đay là đúng?
A. \(C_BA\) = { 0; 2; 3 } B. \(C_BA\) = [ 2; 3 ] C. \(C_BA\) = [ 0; 1 ) D. \(C_BA\) = [ 0; 1 ) ∪ [ 2; 3 ]
Đồ thị (P) của hàm số y=x²+bx+c . Xác định b, c biết (P) đi qua A(-2 ;2) và B(0 ;5)
Xác định Parabol (P) : y = ax^2 + bx + c ( a khác 0 ) biết (P) đi qua :
a, điểm E (0; 6) và hàm số y = ax^2 - bx + c đạt giá trị nhỏ nhất là 4 khi x = -2
b, điểm F (1; 16) và cắt Ox tại các điểm có hoành độ là -1 và 5.
Trong các tập hợp sau, tập nào là tập con của tập nào?
a)A={1;2}, B={x∈N|x≤3},
C=[1;+∞), D={x∈R|2x2-5x+2=0}
b)A={1;3}, B={x∈Z|-1≤x≤2},
C=(0;+∞), D={x∈R|(x-1)(2-x)(x-3)=0}
Xác định các tập hợp A U B, A\C, A giao B, B giao C biết:
A = {x thuộc R| -2 ≤ x ≤ 2}
B = {x thuộc R| x ≥ 3}
C = (-∞;0)
[1] Tập hợp A = { x ∈ N * | -3<x\(\le2\) } bằng với tập hợp nào sau đây?
A. B = { 0; 1; 2 } B. C = { -3; -2; -1; 0; 1; 2 } C. D = { -2; -1; 0; 1; 2 } D. E = { 1;2 }
Điểm nào sau đây thuộc đồ thị của hàm số y = | x + 2 | + | 3 x - 1 | + | - x + 4 | ?
A. M(0; 7) B. N(0; 5)
C. P(-2; -1) D. Q(-2; 1)
Cho hàm số f(x) ={\(\dfrac{-2\left(x-3\right)}{\sqrt{x^2-1}}\)\(\dfrac{-1\le x< 1}{x\ge1}\)giá trị của f(-1), f(1) lần lượt là
A. 0 và 8 B. 8 và 0 C. 0 và 0 D. 8 và 4
Cho hàm số y = f(x) = mx + 2m − 3 có đồ thị (d). gọi A, B là hai điểm thuộc đồ thị
và có hoành độ lần lượt là −1 và 2.
1 Xác định tọa độ hai điểm A và B.
2 Tìm m để cả hai điểm A và B cùng nằm phía trên trục hoành.
3 Tìm điều kiện của m để f(x) > 0, ∀x ∈ [−1; 2]