Tính đạo hàm của hàm số: y = tan π / 2 – x với x ≠ k π , k ∈ Z
Hàm số y = tan ( x / 2 - π / 4 ) có tập xác định là:
A. R\{π/2+k2π, k ∈ Z}.
B. R\{π/2+kπ, k ∈ Z}.
C. R\{3π/2+k2π, k ∈ Z}.
D. R.
Cho hàm số y = cos 2 x .
a) Chứng minh rằng cos 2 x + k π = cos 2 x với mọi số nguyên k. Từ đó vẽ đồ thị (C) của hàm số y = cos 2 x .
b) Viết phương trình tiếp tuyến của đồ thị (C) tại điểm có hoành độ x = π / 3 .
c) Tìm tập xác định của hàm số : z = 1 - cos 2 x 1 + cos 2 2 x
Cho góc α
thỏa mãn `π\2`<α<π,cosα=−\(\dfrac{1}{\sqrt{3}}\). Tính giá trị của các biểu thức sau:
a) sin(α+\(\dfrac{\text{π}}{6}\))
b) cos(α+$\frac{\text{π}}{6}$)
c) sin(α−$\frac{\text{π}}{3}$)
d) cos(α−$\frac{\text{π}}{6}$)
Tập xác định của hàm số y = c o t ( 2 x - π / 3 ) + 2 là:
A. R\{π/6+kπ, k ∈ Z}.
B. R\{π/6+k2π, k ∈ Z}.
C. R\{5π/12+kπ/2, k ∈ Z}.
D. R\{π/6+kπ/2, k ∈ Z}.
Tập D = ℝ / k π 2 k ∈ ℤ là tập xác định của hàm số nào sau đây?
Cho hàm số y = sin4x
a) Chứng minh rằng sin4(x + kπ/2) = sin4x với k ∈ Z
Từ đó vẽ đồ thị của hàm số
y = sin4x; (C1)
y = sin4x + 1. (C2)
b) Xác định giá trị của m để phương trình: sin4x + 1 = m (1)
- Có nghiệm
- Vô nghiệm
c) Viết phương trình tiếp tuyến của (C2) tại điểm có hoành độ x 0 = π / 24
Chu kì của hàm số y = 2 sin ( 2 x + π / 3 ) - 3 cos ( 2 x - π / 4 ) là:
A. 2π
B. π
C. π/2
D. 4 π
Trong các hàm số sau, có bao nhiêu hàm số là hàm chẵn trên tập xác định của nó?
y = c o t 2 x ; y = cos ( x + π ) ; y = 1 - sinx ; y = tan 2016 x
A. 1
B. 2
C. 3
D. 4