hai đội xây dựng cùng làm chung 1 công việc và dự định trong 12 ngày thì xog. Họ cùng làm với nhau 8 ngày thì đội I được điều động làm việc khác,đội II tiếp tục làm.Do cải tiến kĩ thuật ,năng suất tăng gấp đôi nên đội II làm xog phần việc còn lại trog 3 ngày rưỡi.Hỏi nếu mỗi đội làm một mình thì bao nhiêu ngày xog công việc trên?
Gọi thời gian đội I và đội II làm một mình xong công việc lần lượt là x; y ( ngày )
Điều kiện : \(x,y>12 ; x,y\in N\)
Một ngày đội I làm được : \(\frac{1}{x}\)công việc
Một ngày đội II làm được : \(\frac{1}{y}\)công việc
+ Hai đội cùng làm sẽ xong trong 12 ngày nên ta có phương trình : \(12.\left(\frac{1}{x}+\frac{1}{y}\right)=1\)
+ Hai đội cùng làm trong 8 ngày được : \(\frac{8}{12}=\frac{2}{3}\)công việc
=> Còn lại đội II phải hoàn thành một mình \(\frac{1}{3}\)công việc
Vì đội II tăng năng suất gấp đôi nên một ngày đội II làm được \(\frac{2}{y}\)công việc
Đội II hoàn thành \(\frac{1}{3}\)công việc còn lại trong 3,5 ngày nên ta có PT : \(3,5.\frac{2}{y}=\frac{1}{3}\)
Ta có HPT : \(\hept{\begin{cases}12.\left(\frac{1}{x}+\frac{1}{y}\right)=1\\3,5.\frac{2}{y}=\frac{1}{3}\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{1}{x}+\frac{1}{y}=\frac{1}{12}\\\frac{1}{y}=\frac{1}{21}\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}\frac{1}{x}=\frac{1}{28}\\\frac{1}{y}=\frac{1}{21}\end{cases}\Leftrightarrow}\hept{\begin{cases}x=28\\y=21\end{cases}\left(tmđk\right)}\)
Vậy nếu làm một mình, đội I làm xong công việc trong 28 ngày, đội II làm xong công việc trong 21 ngày