\(H=21\left(\sqrt{2+\sqrt{3}}+\sqrt{3-\sqrt{5}}\right)^2-6\left(\sqrt{2-\sqrt{3}}+\sqrt{3+\sqrt{5}}\right)-15\sqrt{15}\)
\(=\dfrac{21}{2}\left(\sqrt{4+2\sqrt{3}}+\sqrt{6-2\sqrt{5}}\right)^2-3\left(\sqrt{4-2\sqrt{3}}+\sqrt{6+2\sqrt{5}}\right)-15\sqrt{15}\)
\(=\dfrac{21}{2}\left(\sqrt{\left(\sqrt{3}+1\right)^2}+\sqrt{\left(\sqrt{5}-1\right)^2}\right)^2-3\left(\sqrt{\left(\sqrt{3}-1\right)^2}+\sqrt{\left(\sqrt{5}+1\right)^2}\right)-15\sqrt{15}\)
\(=\dfrac{21}{2}\left(\sqrt{3}+1+\sqrt{5}-1\right)^2-3\left(\sqrt{3}-1+\sqrt{5}+1\right)^2-15\sqrt{15}\)
\(=\dfrac{21}{2}\left(\sqrt{3}+\sqrt{5}\right)^2-3\left(\sqrt{3}+\sqrt{5}\right)^2-15\sqrt{15}\)
\(=\dfrac{21}{2}\left(8+2\sqrt{15}\right)-3\left(8+2\sqrt{15}\right)-15\sqrt{15}\)
\(=\dfrac{15}{2}\left(8+2\sqrt{15}\right)-15\sqrt{15}\)
\(=60+15\sqrt{15}-15\sqrt{15}=60\)