ĐKXĐ: \(x\ge2\)
pt \(\Leftrightarrow\left(2x-6\right)+\left(3\sqrt{x-2}-\sqrt{x+6}\right)=0\)
\(\Leftrightarrow2\left(x-3\right)+\frac{9\left(x-2\right)-\left(x+6\right)}{3\sqrt{x-2}+\sqrt{x+6}}=0\)
\(\Leftrightarrow2\left(x-3\right)+\frac{8\left(x-3\right)}{3\sqrt{x-2}+\sqrt{x+6}}=0\)
\(\Leftrightarrow\left(x-3\right)\left(2+\frac{8}{3\sqrt{x-2}+\sqrt{x+6}}\right)=0\) (1)
Với \(x\ge2\Rightarrow2+\frac{8}{3\sqrt{x-2}+\sqrt{x+6}}>0\)
(1) <=> x-3=0 <=> x=3 (tm ĐKXĐ)
Vậy x=3