cho x là góc nhọn
tính cosx,cotx nếu
a,sinx=\(\frac{3}{5}\)
b tanx=\(\sqrt{3}\)
c cosx=\(\frac{12}{13}\)
d cotx =1
B=\(\frac{sinx+cox^2-\sqrt{3.01}tanx}{sinx\left(2x\right).cot\left(3x\right)}\)biết sin(5x)=0,29
Cho x nhọn. CM các đẳng thức sau:
\(\frac{sinx+cosx-1}{1-cosx}\) = \(\frac{2.cosx}{sinx-cosx+1}\)
\(\frac{cosx}{sinx-cosx}\) + \(\frac{sinx}{sinx+cosx}\) = \(\frac{1+cot^2x}{1-cot^2x}\)
chứng minh : cotx + sinx/(1+cosx) = 1/sinx
\(a.1+tan^2x=\frac{1}{cos^2x}\)
\(b.1+cot^2x=\frac{1}{sin^2x}\)
\(c.cot^2x-cos^2x=cot^2x.cos^2x\)
\(d.\frac{1+cosx}{sinx}=\frac{sinx}{1-cosx}\)
Cho 0^{\circ} < x < 90^{\circ} . Chứng minh đẳng thức sau :
\left ( \sqrt{\frac{1+sinx}{1-sinx}}-\sqrt{\frac{1-sinx}{1+sinx}} \right )^{2}= 4tan^{2}x |
Cho \(0^{\circ}\) < x < \(90^{\circ}\). Chứng minh các đẳng thức sau :
\(\left ( \sqrt{\frac{1+sinx}{1-sinx}}-\sqrt{\frac{1-sinx}{1+sinx}} \right )^{2}= 4tan^{2}x\)
1+tanx=\(\frac{1}{cos^2x}\)
1+\(cos^2x\)=\(\frac{1}{sin^2x}\)
\(\frac{1}{tanx+1}+\frac{1}{cotx+1}\)= 1
\(\frac{tan^2x-cos^2x}{sin^2x}+\frac{cot^2x-sin^2x}{cos^2x}=2\)
CM GIÙM E CẦN GẤP