\(_{\hept{\begin{cases}x^2y+2y+x=4xy\\\frac{1}{x^2}+\frac{1}{xy}+\frac{x}{y}=3\left(2\right)\end{cases}}}\left(1\right)\)
Đk: x; y khác 0
(1) <=> \(x+\frac{2}{x}+\frac{1}{y}=4\Leftrightarrow\left(x+\frac{1}{x}\right)+\left(\frac{1}{x}+\frac{1}{y}\right)=4\) (3)
(2) <=> \(\left(\frac{1}{x^2}+1\right)+\left(\frac{1}{xy}+\frac{x}{y}\right)=4\)
\(\Leftrightarrow\frac{\left(1+x^2\right)}{x^2}+\frac{\left(1+x^2\right)}{xy}=4\)
\(\Leftrightarrow\left(x+\frac{1}{x}\right)\left(\frac{1}{x}+\frac{1}{y}\right)=4\) (4)
Từ (3) ; (4) ta có:
\(\hept{\begin{cases}x+\frac{1}{x}=2\\\frac{1}{x}+\frac{1}{y}=2\end{cases}}\Leftrightarrow x=y=1\)