Cho số phức \(z=1-2i\) . Điểm nào dưới đây là điểm biểu diễn số phức w = iz trên mặt phẳng tọa độ
A: Q(1;2)
B: N(2;1)
C: P(-2;1)
D: M(1;-2)
Tập hợp các điểm biểu diễn số phức z thỏa mãn 2 z - 1 = z + z + 2 trên mặt phẳng tọa độ là một
A. đường thẳng
B. parabol
C. đường tròn
D. hypebol
Trên mặt phẳng phức, cho điểm A biểu diễn số phức 3-2i, điểm B biểu diễn số phức -1+6i. Gọi M là trung điểm của AB. Khi đó điểm M biểu diễn số phức nào trong các số phức sau:
A. 1-2i
B. 2-4i
C. 2+4i
D. 1+2i
Cho phương trình \(z^2+bc+c=0\) có hai nghiệm z1 z2 thỏa mãn z2 - z1 = 4+2i . Gọi A,B là các điểm biểu diễn các nghiệm của phương trình \(z^2-2bz+4c=0\) . Tính độ dài đoạn AB
A: \(8\sqrt{5}\)
B: \(2\sqrt{5}\)
C: \(4\sqrt{5}\)
D: \(\sqrt{5}\)
Gọi z1 , z2 là hai nghiệm phức của phương trình \(z^2-4z+5=0\) . Giá trị của biểu thức \(\left(z_1-1\right)^{2019}+\left(z_2-1\right)^{2019}\) bằng?
A: 21009
B: 21010
C:0
D: -21010
Cho số phức z = 1 + 2 i 2 - i . Phần thực và phần ảo của số phức w = (z + 1)(z + 2) là
A. 2 và 1
B. 1 và 3
C. 2 và i
D. 1 và 3i
Tập hợp các điểm biểu diễn số phức z thỏa mãn z ' = ( z + i ) ( z + i ) là một số thực và là đường thẳng có phương trình
A. x = 0
B. y = 0
C. x = y
D. x = -y
Tập hợp các điểm biểu diễn số phức z thỏa mãn |z + 1 + i| ≤ 2 là
A. Đường tròn tâm I(1; 1) bán kính R = 2
B. Hình tròn tâm I(1; 1) bán kính R = 2
C. Đường tròn tâm I(-1; -1) bán kính R = 2
D. Hình tròn tâm I(-1; -1) bán kính R = 2
Gọi z1 z2 là hai nghiệm phức của phương trình \(z^2-4z+5=0\) . Tính:
w = \(\dfrac{1}{z_1}+\dfrac{1}{z_2}+i\left(z_1^2z_2+z^2_2z_1\right)\)