tìm nghiệm nguyên của hệ :\(\hept{\begin{cases}2y^2-x^2-xy+2y-2x=7\\x^3+y^3+x-y=8\end{cases}}\)
giải hệ phương trình:
a)\(\hept{\begin{cases}x^2+y^2+z^2=8\\xy+yz+xz=4\\x+y+z=4\end{cases}}\)
b)\(\hept{\begin{cases}x^4+x^3y+9y=y^3x+x^2y^2\\xy^3-x^4=7\end{cases}}\).
Giải các hệ phương trình sau:
\(\hept{\begin{cases}\left(x-1\right)\left(2x+y\right)=0\\\left(y+1\right)\left(2y-x\right)=0\end{cases}}\)\(\hept{\begin{cases}x+y=\frac{21}{8}\\\frac{x}{y}+\frac{y}{x}=\frac{37}{6}\end{cases}}\)\(\hept{\begin{cases}\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2\\\frac{2}{xy}-\frac{1}{z^2}=4\end{cases}}\)\(\hept{\begin{cases}xy+x+y=71\\x^2y+xy^2=880\end{cases}}\)
\(\hept{\begin{cases}x\sqrt{y}+y\sqrt{x}=12\\x\sqrt{x}+y\sqrt{y}=28\end{cases}}\)
Giải hệ phương trinh:
\(1,\hept{\begin{cases}x\left(x-y\right)=6-x-2y\\\left(x+2\right)\sqrt{y^2+4}=y\sqrt{x^2+4y+8}\end{cases}}\)
\(2,\hept{\begin{cases}x^2-xy+y^2=3\\2x^3-9y^3=\left(x-y\right)\left(2xy+3\right)\end{cases}}\)
\(3,\hept{\begin{cases}\sqrt{x}\left(1+\frac{8}{x+y}\right)=3\sqrt{3}\\\sqrt{y}\left(1-\frac{8}{x+y}\right)=-1\end{cases}}\)
GIẢI HPT
A,\(\hept{\begin{cases}3Y^3=Y^2+2X^2\\3X^3=X^2+2Y^2\end{cases}}\)
B,\(\hept{\begin{cases}X\sqrt{X}-8\sqrt{Y}=\sqrt{X}+Y\sqrt{Y}\\X-Y=5\end{cases}}\)
C,\(\hept{\begin{cases}X^2+Y^2+XY+2Y+X=2\\2X^2-Y^2-2Y-2=0\end{cases}}\)
D,\(\hept{\begin{cases}X^3+Y^3=2X^2Y^2\\2Y+X=3XY\end{cases}}\)
E,\(\hept{\begin{cases}X^4-X^3Y+X^2Y^2=1\\X^3Y-X^2+XY=-1\end{cases}}\)
E MỚI HOK HỆ NÊN CHƯA GIẢI ĐC
A CHI NÀO GIỎI GIẢI KĨ GIÚP E
E SẼ TICK CHO
1.Giải hệ pt
1.\(\hept{\begin{cases}x^2-xy+y^2=1\\2y^3=x+y\end{cases}}\) 2.\(\hept{\begin{cases}\left(x+y\right)\left(x^2+y^2\right)=15\\y+y^4=x\end{cases}}\)
3.\(\hept{\begin{cases}\left(x+y\right)\left(x^2+y^2\right)=2\\\left(x+y\right)\left(x^4+y^4+x^2y^2-2xy\right)=2x^5\end{cases}}\) 4.\(\hept{\begin{cases}x^2+3y^2=1\\\left(x+y\right)^3=x\end{cases}}\)
5.\(\hept{\begin{cases}4x\left(x^2+y^2\right)=15\\\left(x-y\right)^4=2y\end{cases}}\) 6.\(\hept{\begin{cases}\left(xy+1\right)\left(x^2y^2+1\right)=15y^3\\y^3+1=xy^4\end{cases}}\)
7.\(\hept{\begin{cases}x^2+y^2+x+y=xy\\2\left(x+y\right)^3=x+y+2\end{cases}}\) 8.\(\hept{\begin{cases}x^2+y^4=y^2\left(x+1\right)\\2y^4=x+y^2\end{cases}}\)
Giải hệ phương trình:
1) \(\hept{\begin{cases}\sqrt[3]{x-y}=\sqrt{x-y}\\x+y=\sqrt{x+y+2}\end{cases}}\)
2) \(\hept{\begin{cases}x-\frac{1}{x}=y-\frac{1}{y}\\2y=x^3+1\end{cases}}\)
3) \(\hept{\begin{cases}\left(x-y\right)\left(x^2+y^2\right)=13\\\left(x+y\right)\left(x^2-y^2\right)=25\end{cases}\left(x;y\in R\right)}\)
4) \(\hept{\begin{cases}3y=\frac{y^2+2}{x^2}\\3x=\frac{x^2+2}{y^2}\end{cases}}\)
5) \(\hept{\begin{cases}x+y-\sqrt{xy}=3\\\sqrt{x+1}+\sqrt{y+1}=4\end{cases}\left(x;y\in R\right)}\)
6) \(\hept{\begin{cases}x^3-8x=y^3+2y\\x^2-3=3\left(y^2+1\right)\end{cases}\left(x;y\in R\right)}\)
7) \(\hept{\begin{cases}\left(x^2+1\right)+y\left(y+x\right)=4y\\\left(x^2+1\right)\left(y+x-2\right)=y\end{cases}\left(x;y\in R\right)}\)
8) \(\hept{\begin{cases}y+xy^2=6x^2\\1+x^2y^2=5x^2\end{cases}}\)
Giải hệ pt:
1. \(\hept{\begin{cases}xy+y^2+x=7y\\\frac{x^2}{y}+x=12\end{cases}}\)
2.\(\hept{\begin{cases}\frac{3}{x^2+y^2-1}+\frac{2y}{x}=1\\x^2+y^2-\frac{2x}{y}=4\end{cases}}\)
3.\(\hept{\begin{cases}x^6+y^8+z^{10}\le1\\x^{2007}+y^{2009}+z^{2011}\ge1\end{cases}}\)
Giải hệ pt:
a)\(\hept{\begin{cases}x+3y-xy=3\\x^2_{ }+y^2+xy=3\end{cases}}\)
b)\(\hept{\begin{cases}x^2-xy+y^2=1\\x^2+2xy-y^2-3x-y=-2\end{cases}}\)
c)\(\hept{\begin{cases}x^2+y^2=2x^2y^2\\\left(x+y\right)\left(1+xy\right)=4x^2y^2\end{cases}}\)
d)\(\hept{\begin{cases}x^2-xy+y^2=1\\x^2+xy+2y^2=4\end{cases}}\)