Đáp án A
Đặt Khi đó, ta có
Tập hợp các số phức nằm trong hoặc trên đường tròn tâm I 1 (1;0) bán kính R 1 = 5
=> Tập hợp các số phức nằm ngoài hoặc trên đường tròn tâm I 2 ( 0 ; 1 ) , bán kính R 2 = 3
Dựa vào hình vẽ, ta thấy rằng
Đáp án A
Đặt Khi đó, ta có
Tập hợp các số phức nằm trong hoặc trên đường tròn tâm I 1 (1;0) bán kính R 1 = 5
=> Tập hợp các số phức nằm ngoài hoặc trên đường tròn tâm I 2 ( 0 ; 1 ) , bán kính R 2 = 3
Dựa vào hình vẽ, ta thấy rằng
Gọi T là tập hợp số phức z thỏa mãn z − i ≥ 3 , z − 1 ≤ 5 . Gọi z 1 , z 2 ∈ T lần lượt là các số phức có môđun nhỏ nhất và lớn nhất. Tìm số phức z 1 + 2 z 2 ?
A. 12 − 2 i
B. - 2 + 12 i
C. 6 − 4 i
D. 12 + 4 i
Gọi S là tập hợp các số phức z thỏa mãn z - i ≥ 3 và z - 2 - 2 i ≤ 5 . Kí hiệu z 1 , z 2 là hai số phức thuộc S và là những số phức có môđun lần lượt nhỏ nhất và lớn nhất. Tính giá trị của biểu thức P = z 2 + 2 z 1 .
A. P= 2 6
B. P= 3 2
C. P= 33
D. P=8
Trong các số phức z thỏa mãn điều kiện z - 2 + 4 i = z - 2 i . Số phức z có môđun nhỏ nhất là?
A. z = -2 + 2i.
B. z = 2 - 2i.
C. z = 2 + 2i.
D. z = 2 - 2i.
Trong các số phức thỏa mãn điều kiện z - 2 - 4 i = z - 2 i . Tìm môđun nhỏ nhất của số phức z+2i
A. 5
B. 3 5
C. 3 2
D. 3 + 2
Trong các số phức z thỏa mãn điều kiện z - 2 - 4 i = z - 2 i .Tìm số phức z có môđun nhỏ nhất
A. z = -2 +2i
B. z = -1 +i
C. z = 3+ 2i
D. z = 2 +2i
Trong các số phức z thỏa mãn điều kiện z - 2 - 4 i = z - 2 i .Tìm số phức z có môđun nhỏ nhất
A. z = -2 +2i
B. z = -1 +i
C. z = 3 +2i
D. z = 2 +2i
Trong các số phức z thỏa mãn điều kiện z - 2 - 4 i = z - 2 i Số phức z có môđun nhỏ nhất có tổng phần thực và phần ảo là
A. 0.
B. 4.
C. 3.
D. 2.
Trong các số phức thỏa mãn điều kiện: z - 2 - 4 i = z - 2 i . Tìm số phức z có môđun nhỏ nhất
A. z = 2 +i
B. z = 3 +i
C. z = 2 +2i
D. z = 1 +3i
Cho số phức z thỏa mãn |z - 3 - 4i| = 5 . Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P = | z + 2 | 2 - | z - i | 2 . Tính môđun của số phức w = M + mi ?
A. |w| = 2315
B. |w| = 1258
C. |w| = 3 137
D. |w| = 2 309